О классификации математических моделей боевых действий (операций) объединения ВВС. Моделирование в военном деле Методы математического моделирования в военной сфере

Для обучения войск ВКО необходима новая материально-техническая база, создаваемая на основе современных максимально унифицированных технических средств обучения, разработанных с использованием современных технологий

Обеспечение высокого уровня подготовленности личного состава – от уровня отдельных подразделений до высших звеньев управления – с одновременным снижением материальных и финансовых затрат является весьма актуальным проблемным вопросом для подготовки войск (сил) и органов управления Войск ВКО.

Необходимость решения в настоящее время данного вопроса обусловлена следующими факторами:

  • постоянным изменением характеристик средств вооруженной борьбы вероятного противника;
  • возрастающей динамикой боевых действий;
  • участием разнородовых и разновидовых сил и средств ПВО и ПРО при решении задач ВКО;
  • ограниченными возможностями используемого типажа воздушных мишеней по созданию воздушной и помеховой обстановки при проведении тактических учений с боевой стрельбой на полигонах МО РФ;
  • возрастающей стоимостью проведения полномасштабных учений и совместных тренировок боевых расчетов различных уровней управления видов и родов войск;
  • ограниченными возможностями существующих тренажерных средств по комплексированию их в тренажерные комплексы и тренажные системы в интересах комплексной подготовки войск и органов управления ВКО.

Возможным подходом к решению проблемных вопросов, связанных с организацией и проведением мероприятий боевой и оперативной подготовки, может быть использование современных технологий моделирования вооруженного противоборства, применяемых в технических средствах обучения (ТСО) для подготовки войск (сил) и органов управления ВКО.

В настоящее время рядом организаций промышленности: Центром совместных технологических разработок, НИИ «Центрпрограммсистем», ЗАО «ЦНТУ «Динамика», ЗАО «НИИ ТС «Синвент», Конструкторским бюро приборостроения, ОАО «Тулаточмаш» и т. д. ведутся работы по созданию современных ТСО для Войск ВКО и разработке перспективных технологий моделирования военных действий и тренажа специалистов войск (сил) и органов управления соединений, объединений ВКО.

Однако их усилия в основном сосредоточены на создании технических средств обучения тактического уровня в виде автономных однородных тренажеров. Эти работы не предполагают интеграцию тренажеров и тренажерных комплексов в тренажные системы внутривидового и межвидового применения, что резко сужает область их применения при подготовке воинских формирований (ВФ) и органов управления, решающих задачи ВКО.

В общем случае типаж ТСО для Войск ВКО может включать:

  • учебно-тренировочные средства;
  • тренажерные комплексы;
  • тренажные системы внутривидового применения;
  • тренажные системы межвидового применения.

При этом следует различать, что учебно-тренировочное средство (УТС) – это аппаратно-программный комплекс, обеспечивающий полный цикл подготовки номеров боевого расчета одного уровня управления (подразделения) за счет проведения автоматизированного теоретического обучения по требуемым видам подготовки, формирования начальных навыков и умений ведения боевой работы (боя) путем проведения индивидуальных и автономных тренировок.

Тренажерный комплекс (ТК) – это структурно-организационное объединение информационно-сопряженных территориально разнесенных УТС, обеспечивающих требуемый уровень практической подготовленности расчетов различных уровней управления с учетом реализованного в образцах ВВТ уровня автоматизации процесса ведения боя путем проведения комплексных (двухстепенных) тренировок в требуемых условиях боевого применения ВВТ.

Тренажная система внутривидового применения (ТС ВП) – это структурно-организационное объединение информационно-сопряженных территориально разнесенных ТК и УТС в тактическом соединении войск, обеспечивающее требуемый уровень практической подготовленности и слаженности расчетов различных уровней управления путем проведения совместных (трехстепенных) тренировок соединений воинских формирований одного вида ВС.

Тренажная система межвидового применения (ТС МП) – это структурно-организационное объединение информационно сопряженных территориально разнесенных ТК и ТС внутривидового применения в оперативно-тактическом соединении войск, обеспечивающее требуемый уровень слаженности расчетов различных уровней управления путем проведения совместных тренировок соединений воинских формирований нескольких видов ВС.

В этой связи создаваемые технические средства обучения боевых расчетов КП и ПУ различного уровня управления Войск ВКО с учетом возможного привлечения разновидовых сил и средств для подготовки к решению задач ВКО должны рассматриваться на всех уровнях предложенной классификации по предназначению в зависимости от особенностей проведения мероприятий боевой и оперативной подготовки.

Основными проблемными вопросами, которые остаются при разработке тренажных средств, являются:

  • обеспечение высокой степени адекватности имитации работы оборудования, систем и средств образцов ВВТ и органов управления;
  • обеспечение требуемой степени адекватности имитируемой воздушной и наземной (при необходимости и морской) обстановки реальной;
  • обеспечение единой имитируемой воздушной и наземной обстановки для всех средств ВВТ и воинских формирований, задействованных в тренировках;
  • сопряжение территориально-разнесенных УТС и тренажерных комплексов в системы более высокого уровня для проведения многостепенных тренировок органов управления;
  • синхронизация во времени работы территориально разнесенных тренажеров и тренажерных комплексов для проведения различных видов тренировок в составе тренажных систем;
  • обеспечение объективности оценивания уровня профессиональной подготовленности специалистов, боевых расчетов и органов управления по результатам документирования их деятельности в процессе подготовки.

Для обучения Войск ВКО необходима новая материально-техническая база, создаваемая на основе современных максимально унифицированных ТСО, разработанных с использованием современных технологий. Подготовка высококвалифицированных специалистов и органов управления, готовых и способных в любой момент времени качественно решать возложенные на них задачи в любых условиях обстановки, практически невозможна без систематических тренировок с моделированием ситуаций, которые могут возникнуть в реальной боевой обстановке, включая нестандартные (нештатные, аварийные) ситуации.

Учитывая отечественную и зарубежную практику разработки ТСО, предлагается следующая концепция их создания:

  • во-первых, это создание многоуровневой системы имитационных и математических моделей средств образцов вооружения и военной техники (ВВТ) при подготовке ВФ (рис. 1);

  • во-вторых, это интеграция созданных имитационных моделей образцов ВВТ, элементов ВФ и тренажных средств в единую моделирующую среду с целью создания и использования единого виртуального боевого пространства при проведении мероприятий боевой и оперативной подготовки (рис. 2);

  • в-третьих, имитационные модели образцов ВВТ и тренажные средства должны взаимодействовать между собой и с моделирующей средой посредством реализации стандарта распределенного моделирования IEEE-1516, то есть по технологии HLA – High Level Architecture (рис. 3).

Создание современных ТСО практически обеспечит реализацию LVC-концепции подготовки войск, которая базируется на комплексном использовании трех видов моделирования: боевой реальности, виртуального и конструктивного моделирования. При этом каждый сегмент моделирования фактически определяет особенности построения ТСО и область его применения (рис. 4).

Так, моделирование боевой реальности (Live Simulator, L-сегмент) предполагает использование реальных военнослужащих и реальных систем при проведении тактических учений (ТУ) различных уровней. В процессе выполнения мероприятий боевой подготовки войска используют реальное вооружение в реальных условиях. Эффекты взаимодействия могут быть обозначены подыгрышем противоположной стороны с использованием мишеней при проведении боевых стрельб и полетов реальной авиации при проведении учебных стрельб. Данный вид моделирования характерен для полигонов ВКО.

Виртуальное моделирование (Virtual Simulator, V-сегмент) предполагает работу реальных людей с имитируемыми системами в информационно-моделирующей среде, то есть использование различных видов и типов тренажеров при проведении мероприятий боевой подготовки, направленных на одиночную подготовку обучаемых, обучение и слаживание боевых расчетов, расчетов КП (ПУ) различных уровней управления (см. рис. 3). Данный вид моделирования применим в местах постоянной дислокации при проведении различных видов тренировок.

Конструктивное моделирование (Constructive Simulator, C-сегмент) включает имитированный личный состав, технику, вооружение и воинские формирования. Реальные люди контролируют имитацию, в которой взаимодействуют смоделированные войска, техника и вооружение (рис. 5). Подобная система моделирования должна использоваться для проведения учебных мероприятий при подготовке органов управления (ОУ). Данный вид моделирования применим при проведении компьютерных командно-штабных тренировок (КШТ) и командно-штабных учений (КШУ) ОУ начиная с тактического звена.

Комплексное применение отмеченных видов моделирования предполагает возможность их объединения в тренажные системы внутривидового и межвидового применения. Предлагаемый вариант ТС межвидового применения ЗРВ (ВКО, ВВС, ПВО ВМФ, войск ПВО СВ) в условиях полигона представлен на рисунке 6, где воздушная (фоноцелевая) обстановка создается путем комплексирования полетов реальных и имитируемых целей. Сигналы от имитируемых целей поступают на вход радиоприемных средств ЗРВ и РТВ так же, как и сигналы от реальных целей, и создают общую обстановку. При этом реальная авиация отрабатывает способы преодоления ПВО и поражения объектов обороны посредством применения авиационных средств поражения. Необходимо отметить, что имитируемые цели могут быть также созданы на базе авиационных тренажеров с трехмерной визуализацией обстановки для пилотов. Особенности архитектуры полигона ВКО, реализующего LVC-концепцию подготовки войск, представлены на рисунке 7.

Необходимо учитывать, что интеграция тренажных средств (тренажеров, тренажерных комплексов и систем) в ЕИМС потребует решения ключевых проблем системного характера, а именно:

  • методических – разработка новых программ и методик обучения во взаимосвязи с созданием новых поколений ТСО и оснащение ими учебной материально-технической базы войск;
  • системотехнических – осуществление перехода к модульному принципу построения аппаратно-программных средств ТСО на качественно новой информационно-технологической базе;
  • технологических – создание отечественной технологической базы разработки средств обучения нового поколения внутривидового и межвидового применения.

Возможными направлениями решения отмеченных проблем следует считать:

  • использование перспективной элементной базы и современных аппаратно-программных средств при создании перспективных ТСО;
  • применение аппаратно-программных средств, построенных на основе сертифицированных программно-технических комплексов (ПТК), адаптированных к применению в составе тренажных систем для Войск ВКО;
  • максимально возможную унификацию аппаратно-программных средств, входящих в состав тренажных систем для Войск ВКО;
  • сопряжение аппаратно-программных средств, входящих в состав тренажных систем Войск ВКО, на основе высокоуровневых технологий комплексирования;
  • интеграцию ранее разработанных и разрабатываемых тренажеров (тренажерных комплексов) в единую информационно-моделирующую среду (ЕИМС) на основе технологии распределенного моделирования;
  • использование ЕИМС для всех средств, задействованных в проведении различных видов тренировок;
  • комплексирование различных сегментов моделирования (V-сегмент, C-сегмент) для проведения комплексных и многостепенных тренировок подразделений, частей и соединений и ОУ по единому замыслу и сценарию;
  • использование средств комплексной системы защиты информации в интересах обеспечения безопасности обработки, хранения и передачи информации.

По нашему мнению, реализация отмеченных направлений позволит образовать перспективную технологическую базу для создания тренажных систем внутривидового и межвидового применения и обеспечить:

  • увеличение доли обученных специалистов для Войск ВКО, несмотря на сокращение сроков общей продолжительности службы в Вооруженных силах;
  • интенсивную подготовку личного состава подразделений и соединений Войск ВКО на основе отработки вариантов обстановки любой сложности по замыслу руководителя обучения;
  • комплексную подготовку подразделений и органов управления воинских формирований Войск ВКО к выполнению боевых задач на более высоком методическом и техническом уровне;
  • достижение максимальной объективности контроля уровня подготовки военнослужащих, подразделений, соединений и органов управления;
  • совершенствование навыков командиров и должностных лиц органов управления в принятии решений и организации взаимодействия, решении других задач;
  • повышение морально-психологической устойчивости личного состава в условиях обстановки, близкой к реальной.

По нашим оценкам, реализация предлагаемой к применению в Войсках ВКО LVC-концепции подготовки войск и органов управления позволит обеспечить существенное снижение затрат (в 7–12 раз) на проведение слаживания межвидовых группировок сил и средств ПВО по отношению к обозначению воздушного противника с использованием реальных летных средств. Научный потенциал по дальнейшей разработке LVC-концепции имеет ВА ВКО им. Г. К. Жукова, а практический опыт по ее реализации при подготовке войск в перспективных центрах боевой подготовки – ОАО «НПО «Русские базовые информационные технологии», что позволяет сделать вывод о целесообразности совместного использования потенциалов данных заведений (предприятий) при проведении работ по созданию перспективных центров боевой подготовки (ЦБП) Войск ВКО.

Процесс создания математических моделей боевых действий трудоемок, длителен и требует использования труда специалистов достаточно высокого уровня, имеющих хорошую подготовку как в предметной области, связанной с объектом моделирования, так и в области прикладной математики, современных математических методов, программирования, знающих возможности и специфику современной вычислительной техники. Отличительной особенностью математических моделей боевых действий, создаваемых в настоящее время, является их комплексность, обусловленная сложностью моделируемых объектов. Необходимость построения таких моделей требует разработки системы правил и подходов, позволяющих снизить затраты на разработку модели и уменьшить вероятность появления трудноустранимых впоследствии ошибок. Важной составной частью такой системы правил являются правила, обеспечивающие корректный переход от концептуального к формализованному описанию системы на том или ином математическом языке, что достигается выбором определенной математической схемы. Под математической схемой понимается частная математическая модель преобразования сигналов и информации некоторого элемента системы, определяемая в рамках конкретного математического аппарата и ориентированная на построение моделирующего алгоритма данного класса элементов сложной системы .

В интересах обоснованного выбора математической схемы при построении модели целесообразно провести ее классификацию по цели моделирования, способу реализации, типу внутренней структуры, сложности объекта моделирования, способу представления времени.

Необходимо отметить, что выбор классификационных признаков определяется конкретными целями исследования. Целью классификации в данном случае является, с одной стороны, обоснованный выбор математической схемы описания процесса боевых действий и ее представление в модели в интересах получения достоверных результатов, а с другой - выявление особенностей моделируемого процесса, которые необходимо учитывать.

Цель моделирования - исследование динамики протекания процесса вооруженной борьбы и оценка показателей эффективности боевых действий. Под такими показателями понимается численная мера степени выполнения боевой задачи, которую количественно можно представить, например, относительной величиной предотвращаемого ущерба объектам обороны или наносимого противнику ущерба.

Способ реализации должен состоять в формализованном описании логики функционирования образцов вооружения и военной техники (ВВТ) в соответствии со своими аналогами в реально протекающем процессе. Необходимо учитывать, что современные образцы ВВТ - это сложные технические системы, решающие комплекс взаимосвязанных задач, которые тоже являются сложными техническими системами. При моделировании таких объектов целесообразно сохранить и отразить как естественный состав и структуру, так и алгоритмы боевого функционирования модели. Причем в зависимости от целей моделирования может потребоваться варьирование этими параметрами модели (составом, структурой, алгоритмами) для различных вариантов расчета. Данное требование определяет необходимость разрабатывать модель конкретного образца ВВТ как составную модель его подсистем, представляемых взаимосвязанными компонентами.

Таким образом, по классификационному признаку тип внутренней структуры модель должна быть составной и многокомпонентной, по способу реализации - обеспечивать имитационное моделирование боевых действий.

Сложность объекта моделирования. При разработке компонент, определяющих состав моделей образцов ВВТ, и объединении моделей образцов ВВТ в единую модель боевых действий необходимо учитывать отличающиеся на порядки характерные масштабы осреднения по времени величин, фигурирующих в компонентах.

Конечной целью моделирования является оценка показателей эффективности боевых действий. Именно для расчета этих показателей и разрабатывается модель, воспроизводящая процесс боевых действий, который условно назовем главным. Характерный временной масштаб всех остальных входящих в него процессов (первичной обработки радиолокационной информации, сопровождения целей, наведения ракет и др.) много меньше главного. Таким образом, все протекающие в вооруженной борьбе процессы целесообразно разделить на медленные, прогноз развития которых интересует, и быстрые, характеристики которых не интересуют, однако их влияние на медленные необходимо учитывать. В таких случаях характерный временной масштаб осреднения выбирается так, чтобы иметь возможность составить модель развития главных процессов. Что касается быстрых процессов, то в рамках создаваемой модели необходим алгоритм, позволяющий в моменты осуществления быстрых процессов учитывать их влияние на медленные.

Возможны два подхода к моделированию влияния быстрых процессов на медленные. Первый состоит в разработке модели их развития с соответствующим характерным временным масштабом осреднения, много меньшим, чем у главных процессов. При расчете развития быстрого процесса в соответствии с его моделью характеристики медленных процессов не меняются. Результатом расчета является изменение характеристик медленных процессов, с точки зрения медленного времени происходящее мгновенно. Для того чтобы иметь возможность реализовать этот способ расчета влияния быстрых процессов на медленные, необходимо вводить соответствующие внешние величины, идентифицировать и верифицировать их модели, что усложняет все этапы технологии моделирования.

Второй подход состоит в отказе от описания развития быстрых процессов с помощью моделей и рассмотрения их характеристик в качестве случайных величин. Для реализации этого способа необходимо иметь функции распределения случайных величин, которые характеризуют влияние быстрых процессов на медленные, а также алгоритм, определяющий моменты наступления быстрых процессов. Вместо расчета развития быстрых процессов производится выброс случайного числа и в зависимости от выпавшего значения в соответствии с известными функциями распределения случайных величин определяется значение, которое примут зависимые показатели медленных процессов, таким образом учитывается влияние быстрых процессов на медленные. В результате характеристики медленных процессов также становятся случайными величинами.

Необходимо отметить, что при первом способе моделирования влияния быстрых процессов на медленные быстрый процесс становится медленным, главным, и на его протекание влияют быстрые уже по отношению к нему процессы. Эта иерархическая вложенность быстрых процессов в медленные - одна из составляющих того качества моделирования процесса вооруженной борьбы, которое относит модель боевых действий к структурно-сложной.

Способ представления модельного времени. На практике используют три понятия времени: физическое, модельное и процессорное. Физическое время относится к моделируемому процессу, модельное - к воспроизведению физического времени в модели, процессорное - это время выполнения модели на компьютере. Соотношение физического и модельного времени задается коэффициентом K, определяющим диапазон физического времени, принимаемого за единицу модельного времени.

В силу дискретного характера взаимодействия образцов ВВТ и их представления в виде компьютерной модели модельное время целесообразно задавать путем приращения дискретных временных отрезков. При этом возможны два варианта его представления: 1) дискретное время есть последовательность равноудаленных друг от друга вещественных чисел; 2) последовательность временных точек определяется значимыми событиями, происходящими в моделируемых объектах (событийное время). С точки зрения вычислительных ресурсов второй вариант более рационален, поскольку позволяет активизировать объект и имитировать его работу только при наступлении некоторого события, а в промежутке между событиями предполагать, что состояние объектов остается неизменным.

Одной из основных задач при разработке модели является выполнение требования синхронизации всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели. При непрерывном представлении времени считается, что существуют единые для всех объектов часы, которые показывают единое время. Передача информации между объектами происходит мгновенно, и таким образом, сверяясь с едиными часами, можно установить временную последовательность всех происходивших событий. Если в модели существуют объекты с дискретным представлением времени, для формирования единых часов модели необходимо объединить множество временных отсчетов моделей объектов, упорядочить и доопределить значения сеточных функций на недостающих временных отсчетах. Синхронизировать модели объектов с событийным временем можно только явно, путем передачи сигнала о наступлении события. При этом необходима управляющая программа-планировщик организации выполнения событий различных объектов, которая и определяет требуемый хронологический порядок выполнения событий.

В модели боевых действий необходимо совместно использовать событийное и дискретное время, такое представление времени называют гибридным. При его использовании моделируемые объекты приобретают свойство изменять значения некоторых показателей состояния скачкообразно и практически мгновенно, то есть становятся объектами с гибридным поведением.

Подводя итог приведенной классификации, можно сделать вывод о том, что модель боевых действий должна представлять собой составную, структурно-сложную, многокомпонентную, динамическую, имитационную модель с гибридным поведением.

Для формализованного описания такой модели целесообразно использовать математическую схему на основе гибридных автоматов . В этом случае образцы ВВТ представляются многокомпонентными активными динамическими объектами. Компоненты описываются набором переменных состояния (внешние и внутренние), структурой (одноуровневой или иерархической) и поведением (карта поведения). Взаимодействие между компонентами осуществляется посредством посылки сообщений. Для объединения компонент в модель активного динамического объекта используются правила композиции гибридных автоматов.

Введем следующие обозначения:

sÎRn - вектор переменных состояния объекта, который определяется совокупностью входных воздействий на объект , воздействий внешней среды , внутренних (собственных) параметров объекта hkÎHk,;

Множество вектор-функций, определяющих закон функционирования объекта во времени (отражают его динамические свойства) и обеспечивающих существование и единственность решения s(t);

S0 - множество начальных условий, включающее все начальные условия компонент объекта, порождаемые функцией инициализации в процессе функционирования;

Предикат, определяющий смену поведения объекта (выделяет из всех специально отобранных состояний нужное, проверяет условия, которые должны сопутствовать наступившему событию, и принимает при их выполнении значение истина), задается множеством булевских функций;

Инвариант, определяющий некое свойство объекта, которое должно сохраняться на заданных промежутках времени, задается множеством булевских функций;

- множество вещественных функций инициализации, ставящих в соответствие значению решения в правой конечной точке текущего промежутка времени значение начальных условий в левой начальной точке на новом временном промежутке :s()=init(s());

Гибридное время, задается последовательностью временных отрезков вида , - замкнутые интервалы.

Элементы гибридного времени Pre_gapi, Post_gapi являются «временной щелью» очередного такта гибридного времени tH={t1, t2,…}. На каждом такте на отрезках локального непрерывного времени гибридная система ведет себя как классическая динамическая система до точки t*, в которой становится истинным предикат, определяющий смену поведения. Точка t* является конечной точкой текущего и началом следующего интервала. В интервале расположены две временные щели, в которых могут изменяться переменные состояния. Течение гибридного времени в очередном такте ti=(Pre_gapi,, Post_gapi) начинается с вычисления новых начальных условий во временной щели Pre_gapi. После вычисления начальных условий проводится проверка предиката на левом конце нового промежутка времени. Если предикат принимает значение истина, оcуществля-ется переход сразу во вторую временную щель, в противном случае выполняется дискретная после-довательность действий, соответствующих текущему такту времени. Временная щель Post_gapi предназначена для выполнения мгновенных дейст-вий после завершения длительного поведения на данном такте гибридного времени.

Под гибридной системой H понимается математический объект вида

.

Задача моделирования заключается в нахождении последовательности решений Ht={(s0(t),t, t0), (s1(t),t,t1),…}, определяющих траекторию гибридной системы в фазовом пространстве состояний. Для нахождения последовательности решений Ht необходимо проводить эксперимент или имитацию на модели при заданных исходных данных. Другими словами, в отличие от аналитических моделей, с помощью которых получают решение известными математическими методами, в данном случае необходим прогон имитационной модели, а не решение. Это означает, что имитационные модели не формируют свое решение в том виде, в каком это имеет место при использовании аналитических моделей, а являются средством и источником информации для анализа поведения реальных систем в конкретных условиях и принятия решений относительно их эффективности.

В 2 ЦНИИ МО РФ (г. Тверь) на основе представления моделируемых объектов в виде гибридных автоматов разработан имитационный моделирующий комплекс (ИМК) «Селигер», предназначенный для оценки эффективности группировок сил и средств воздушно-космической обороны при отражении ударов средств воздушно-космическо-го нападения (СВКН). Основу комплекса составляет система имитационных моделей объектов, имитирующая алгоритмы боевого функционирования реальных образцов ВВТ (зенитно-ракетный комплекс, радиолокационная станция, комплекс средств автоматизации командного пункта (для радиотехнических войск - радиолокационной роты, батальона, бригады, для зенитно-ракетных войск - полка, бригады и др.), боевой авиационный комплекс (истребительной авиации и средств воздушно-космического нападения), средства радиоэлектронного подавления, огневые комплексы нестратегической противоракетной обороны и др.). Модели объектов представлены в виде активных динамических объектов (АДО), в состав которых входят компоненты, позволяющие исследовать в динамике различные процессы при их функционировании.

Например, радиолокационная станция (РЛС) представлена следующими компонентами (рис. 1): антенная система (АС), радиопередающее устройство (РПрдУ), радиоприемное устройство (РПрУ), подсистема защиты от пассивных и активных помех (ПЗПАП), блок первичной обработки информации (ПОИ), блок вторичной обработки информации (ВОИ), аппаратура передачи данных (АПД) и др.

Композиция данных компонент в составе модели РЛС позволяет адекватно моделировать процессы приема-передачи сигналов, обнаружения эхосигналов и пеленга, алгоритмы помехозащиты, измерения параметров сигнала и др. В результате моделирования рассчитываются основные показатели, характеризующие качество РЛС как источника радиолокационной информации (параметры зоны обнаружения, точностные характеристики, разрешающая способность, производительность, помехозащищенность и т.п.), что позволяет оценить эффективность ее работы при различных условиях помехоцелевой обстановки.

Синхронизация всех моделируемых объектов по времени, то есть правильное отображение порядка и временных отношений между изменениями в процессе боевых действий на порядок выполнения событий в модели, осуществляется программой управления объектами (рис. 2). В функции данной программы также входят создание и удаление объектов, организация взаимодействия между объектами, протоколирование всех событий, происходящих в модели.

Использование протокола событий позволяет проводить ретроспективный анализ динамики боевых действий любым моделируемым объектом. Это дает возможность оценить степень адекватности моделей объектов как с использованием методов предельных точек, так и посредством контроля корректности моделирования процессов в компонентах объекта (то есть проверка адекватности методом прогона от входа к выходу ), что повышает достоверность и обоснованность получаемых результатов.

Необходимо отметить, что многокомпонентный подход позволяет варьировать их составом (например, исследовать боевую работу ЗРК с различным типом АСЦУ) в интересах синтеза структуры, удовлетворяющей определенным требованиям. Причем за счет типизации программного представления компонент, без перепрограммирования исходного кода программы.

Общим преимуществом данного подхода при построении модели является возможность оперативного решения ряда исследовательских задач: оценка влияния изменения состава и структуры системы управления (количество уровней, цикл управления и др.) на эффективность боевых действий группировки в целом; оценка влияния различных вариантов информационного обеспечения на потенциальные боевые возможности образцов и группировки в целом, исследование форм и способов боевого применения образцов и др.

Построенная на основе гибридных автоматов модель боевых действий представляет собой суперпозицию совместного поведения параллельно и/или последовательно функционирующих и взаимодействующих многокомпонентных АДО, являющихся композицией гибридных автоматов, функционирующих в гибридном времени и взаимодействующих через связи на основе сообщений.

Литература

1. Сирота А.А. Компьютерное моделирование и оценка эффективности сложных систем. М.: Техносфера, 2006.

2. Колесов Ю.Б., Сениченков Ю.Б. Моделирование систем. Динамические и гибридные системы. СПб: БХВ-Петербург, 2006.

HTML clipboard

Имитационная система моделирования боевых действий JWARS ВС США

Капитан 1 ранга Н. Резяпов,
майор С. Чеснаков,
капитан М. Инюхин

В арсенал инструментария всех звеньев руководства ВС США уже довольно давно и прочно вошло компьютерное моделирование. С начала 2000-х годов военное руководство США выделяет средства имитации и моделирования боевых действий в число приоритетных технологий при формировании военно-технической политики. Высокая динамика развития вычислительной техники, технологий программирования, системотехнических основ моделирования различных реальных процессов обозначили огромный прорыв США в области разработки моделей и имитационных систем 1 .

Основными направлениями развития моделирования в ВС США являются: оптимизация структуры ВС, выработка концепций боевого применения войск (сил), развитие тактики и оперативного искусства, оптимизация процесса приобретения новых образцов ВВТ, совершенствование оперативной и боевой подготовки и др. При этом в последнее время акцент делается на создание систем и моделей, направленных на решение задач в области строительства и применения объединенных и коалиционных группировок войск (сил). Примером может служить объединенная система моделирования боевых действий JWARS (Joint Warfare System), представляющая собой модель проведения военных операций объединенными группировками войск. Она позволяет моделировать наземные, воздушные, морские операции и боевые действия, действия сил специальных и информационных операций, защиту/ применение химического оружия, действия систем ПРО/ПВО на ТВД, управления и космической разведки, связи, тылового обеспечения.

JWARS - это современная конструктивная1 система моделирования, разработанная с использованием CASE-средств (автоматизированная разработка программного обеспечения) на языке программирования Smalltalk. Она использует событийное время и имитирует деятельность и взаимодействие военных подразделений. В рамках этой системы достаточно глубоко проработаны вопросы создания трехмерного виртуального боевого пространства, учета погодных условий и особенностей рельефа местности, тылового обеспечения боевых действий, создания четкой системы информационных потоков, а также вопросы поддержки принятия решений в системе управления и контроля.

Основным назначением JWARS является моделирование боевых действий объединенных оперативных формирований (ООФ), что должно повысить качество объединенного оперативного планирования и применения вооруженных сил, оценки боевых возможностей объединенных формирований и разработки концептуальных документов строительства ВС в целом.

Эта система позволяет осуществлять комплексный контроль процесса оперативного планирования и исполнения, а также многократную отработку выполнения одних и тех же задач, что существенно повышает возможности анализа результатов проводимых действий и выбора наиболее эффективного сценария применения сил и средств.

Возможности JWARS:
- позволяет планировать военные операции продолжительностью более 100 дней;
- временной масштаб моделирования 1:1000 (в 1 000 раз быстрее, чем реальное время);
- время инициализации модели до 3 мин.

Развитие модели осуществляется под непосредственным руководством начальника управления анализа и оценки программ. Подчеркивается значимость JWARS для разработки и проверки перспективных стратегических концепций, развития форм и способов боевого применения ООФ в условиях сетецентрических боевых действий.

Последняя версия JWARS отличается наличием модульной системы моделирования сети межтеатровых воинских перевозок, усовершенствованным блоком моделирования системы управления ООФ, возможностью моделирования ударов по мобильным целям, наличием геоинформационной и геофизической базы данных по Юго-Восточной Азии, Дальнему Востоку, Южной Азии и Южной Америке, возросшим быстродействием вследствие модернизации программного кода и внедрения новой технической базы, возможности конструирования сценария и др.

Моделирование применения ОМП в настоящее время охватывает имитацию защиты от химического оружия и оценку его воздействия на боевые подразделения и окружающую среду. В ближайшей перспективе планируется создание блоков моделирования оценки применения биологического и ядерного оружия.

Модель действий ВВС поддерживает решение около 20 видов типовых задач. Описываются процессы непосредственной авиационной поддержки, применения КР, нанесения массированных ракетно-авиаци-онных ударов (МРАУ), обеспечения ПВО районов боевых действий, уничтожения наземных/воздушных/морских целей, подавления системы ПВО противника, массированного применения БЛА, целеуказания и наведения при временных ограничениях, постановки мин с воздушных носителей, дозаправки в воздухе и т. д.

Модель действий ВМС содержит процессы поражения надводных целей, применения ПЛ против надводных сил, морской блокады, ПЛО (воздушными, подводными и надводными средствами), минной войны на море, поддержки наземных сил корабельной артиллерией, проведения морских десантных операций и др.

Модель действий ПРО/ПВО на ТВД базируется на оценке действий системы «Пэтриот»/ТХААД, «Иджис», лазерного оружия воздушного базирования. Имитируется ракетная угроза и функционирование интегрированной системы ПРО на ТВД.

Моделирование систем управления, связи, компьютерного обеспечения, разведки и наблюдения (C4ISR) основывается на ситуационной цифровой карте обстановки, имитации информационных потоков на поле боя, сборе и агрегации информации об обстановке с распознаванием целей, постановке задач средствам обнаружения, в том числе космическим, и др.

Процесс принятия решений основан на базе знаний по тактическим нормативам, а также предпочтениях лиц, принимающих решения.

Система позволяет моделировать работу средств РЭБ, оценивать процессы восстановления системы управления после воздействия противника.

При моделировании информационных операций имитируется прямое воздействие на системы связи, обнаружения и обработки информации противника.

В настоящее время невозможна оценка последствий динамического ввода информационных вирусов либо искажения информации в компьютерах или информационных потоках противника, а также отсутствует возможность вскрытия мер по введению в заблуждение (планируется реализовать в последующих версиях).
Моделирование функционирования космических сил и средств учитывает планируемую модернизацию (перспективный облик) сил и средств, процессы контроля космического пространства, имитацию противокосмических операций и информационной войны.

Тыловое обеспечение моделируется с учетом автономности, планирования перевозок сил и средств воздушным, железнодорожным, автомобильным, морским и трубопроводным транспортом, обеспечения со стороны союзников и др.

Примерами задач, решавшихся с помощью JWARS в условиях сетецентриче-ских военных действий, являются оценка эффективности:
- защиты критически важных объектов (территория США, базы, группировки ВС на ТВД, силы и объекты союзников и др.);
- нейтрализации ОМП и средств его доставки;
- защиты информационных систем;
- мер по противодействию противнику посредством непрерывного наблюдения, слежения, массированного воздействия высокоточными воздушными и наземными средствами по критическим важным стационарным и мобильным целям;
- новых информационных технологий и инновационных концепций для разработки архитектуры «объединенной» системы управления и системы единой карты оперативной обстановки и др.

JWARS включает продукционную экспертную систему с выводом на основе решающих правил «если.., то.., иначе...». Обновление базы знаний (значений фактов, правил) о противнике осуществляется в результате информационного процесса разведки. База знаний содержит также информацию о своих силах, результатах оценки обстановки, в том числе противником. Она предоставляет пользователям автоматически генерируемые решения, в которые можно вносить свои коррективы в интерактивном режиме. Решающие правила базы знаний являются ключевыми для динамического функционирования модели. В результате срабатывания правила каждому факту могут быть назначены одно или несколько действий. Действия выполняются, когда значение вычисленного факта становится равным определенной пороговой величине и производит изменения в состоянии базы данных.

Срабатывание правил также в автоматическом режиме генерирует запросы к системе разведки, которая выдает нотификации (ответы) на эти запросы. Работа правил определяет динамику поведения модели во времени. Генерируемые системой разведки ответы оцениваются критерием сатисфакции (степени удовлетворения запроса). В случае низкого значения коэффициента удовлетворения запрос переформулируется с учетом взаимозависимости между запросами и состоянием оперативной обстановки.

При оценке оперативной обстановки используется цифровая географическая карта с нанесенной сеткой координат (Common Reference Grid). Для каждой ячейки координатной сетки, соответствующей участку суши, рассчитывается значение показателя, характеризующего степень контроля ситуации своих сил и противника, на базе вычисления «силы влияния» по определенной методике. В результате каждая ячейка окрашивается в синий или красный цвет.

Модель процессов обнаружения и классификации объектов (целей) носит стохастический характер, зависящий от действий сил противника, видимости, степени радиоэлектронного противодействия, характера местности. На основе рассчитанных вероятностей определяется количество обнаруживаемых сил и средств противника из реально присутствующих, затем моделируется вероятностный процесс распознавания/классификации целей, в результате чего они соотносятся, например, либо с конкретным типом образца ВВТ, либо лишь с определенным классом образцов. Затем формируется итоговый доклад работы средства обнаружения.

Процесс ассоциации и корреляции результатов работы различных разведывательных средств в условиях единого информационного пространства заключается в следующем:
1. Результаты обнаружения каждого средства разведки наносятся на ситуационную карту.
2. Экстраполируются позиции каждого из ранее обнаруженных объектов во времени к моменту поступления новых докладов о результатах работы средств разведки.
3. На основе расчета расположения «центра масс» ранее обнаруженных объектов производится отбор вероятных кандидатов для ассоциации с объектами, информация о которых содержится во вновь поступивших докладах о результатах работы средств разведки.
4. Вычисляется вероятностная величина ассоциации объектов.
5. На базе относительной величины вероятности ассоциации определяется, является ли объект вновь обнаруженным из ранее известных или новым объектом, обнаруженным впервые.

Характер алгоритмов, используемых в JWARS:
1. Вероятностный (стохастический) процесс (Монте-Карло) - вычисления на основе генераторов случайных чисел, дискретные выходные величины (моделирование процессов обнаружения, планирование ударов СВН по наземным целям, ПРО/ПВО на ТВД, минная война на море, борьба с ПЛ, противоборство надводных сил флотов и т. д.).
2. Детерминированные вычисления -(аналитические и на основе формул теории вероятностей). Возможно моделирование процессов применения и защиты от ОМП, маневрирования силами и средствами.

Свойства модели JWARS, характерные для условий сетецентрических военных действий:
- возможность динамически в интерактивном режиме реагировать на происходящие события исходя из восприятия ситуации каждой стороной на базе анализа оперативной обстановки;
- создание основы для принятия решения с использованием аналитической оценки сложившейся ситуации;
- осуществление высокой степени координации/синхронизации действий командующего ООФ с действиями подчиненных командиров во всех звеньях руководства;
- интеграция разведывательной информации для приятия решений;
- моделирование поведения «ключевых объектов» (centers of gravity) - военных и экономических - в отношении состояния ВПР противника;
-оценка реализации.конечной цели военной операции (end state), например в виде изменения политики руководства государства;
- описание агрегированных критериев достижения победы (географических -отсутствие подразделений противника на определенной территории, желаемого соотношения сил - избежание потерь своих сил и союзников, нанесение поражения противнику в течение определенного времени);
- определение степени достижения целей военной операции.

Программно система JWARS состоит из трех модулей: функционального, имитационного и системного, которые объединены в единый комплекс. Функциональный модуль содержит прикладное программное обеспечение, позволяющее моделировать боевые функциональные возможности. Специальное программное обеспечение имитационного модуля создает виртуальное изображение боевого пространства. Системный модуль обеспечивает функционирование аппаратных средств системы JWARS и создает человеко-машинные интерфейсы обмена данными, с помощью которых осуществляется ввод исходных данных и получение результатов моделирования.

Функциональный модуль. Основным элементом системы JWARS является объект боевого пространства - Battle Space Entity (BSE), Номинальный уровень детализации: батальон для общевойсковых операций, эскадрилья для воздушных операций, корабль для морских операций и разведывательные платформы для систем разведки и наблюдения. Вспомогательными объектами боевого пространства выступают объекты инфраструктуры (порты, аэродромы и т. п.), пункты управления (штабы, командные пункты, узлы связи и т. п.). Объекты боевого пространства характеризуются статическими (например, радиус поражения ударных средств) и динамическими (в частности, координаты местоположения) свойствами. Данные также включают информацию о взаимодействии объектов друг с другом и внешней средой.

Взаимодействие объектов боевого пространства в системе JWARS реализуется с помощью различных алгоритмов, которые меняются в зависимости от характера моделируемой деятельности, функциональных возможностей модели, с которой алгоритм связан, и наличия данных. Все взаимодействия между объектами боевого пространства в JWARS представляют собой события моделирования. Значимость отдельных событий может изменяться от относительно низкой до очень высокой.

Имитационный модуль. Этот модуль содержит средства имитации необходимой инфраструктуры, разработанные объектно-ориентированным методом, что обеспечивает их модульность и, следовательно, достаточную гибкость, необходимую для оперативного внесения изменений в виртуальное боевое пространство.

Система JWARS предъявляет жесткие требования к хранению и обработке данных. Для соответствия этим требованиям необходима надежная система управления базами данных. В JWARS для этих целей используется система управления базами данных (СУБД) ORACLE, которая служит для хранения всей информации, в том числе как входной, так и выходной.

Подобно другим имитационным системам последнего поколения JWARS в обязательном порядке поддерживает стандарты HLA-архитектуры 2 .

Системный модуль. Он включает аппаратные средства системы JWARS, с помощью которых пользователи осуществляют моделирование. Человеко-машинный интерфейс используется при разработке сценариев боевых действий, ведении разведки боевого пространства, осуществлении боевого управления и контроля, а также при проведении анализа результатов.

Имитация широкого спектра военных подразделений в JWARS обеспечивается применением баз знаний о событийных данных, правилах и причинно-следственных связях, которые в совокупности позволяют аналитически описать положение своих формирований и войск (сил) противника, а также внешние условия. По заявлениям разработчиков, сравнительно небольшой набор причинно-следственных связей обеспечивает возможность моделирования различных военных операций с достаточно высокой степенью реалистичности без вмешательства человека.

Более ранние версии системы JWARS позволяли учитывать такие факторы, как уровень подготовки личного состава и его морально-психологическое состояние. В результате имелись возможности по созданию подразделений разного уровня боеспособности, с различными личными качествами командиров, такими как склонность к авантюризму, обеспокоенность некачественным решением поставленной боевой задачи и др. Эти характеристики дают определенную гибкость при создании стратегии поведения тех или иных подразделений. В последних версиях JWARS была установлена жесткая иерархия командной линии постановки задач, которая позволила в целом имитировать реальную оценку выполнения задач подчиненными подразделениями и вырабатывать оптимальные варианты их боевого применения. Другими словами, вышестоящие инстанции ставят боевую задачу и вводят ограничения для ее решения.

Главная цель создания причинно-следственных связей состоит в том, чтобы в автоматизированном режиме воспроизводить поведение подразделения исходя из складывающейся боевой обстановки. Есть возможность применения мастера создания причинно-следственных данных для выработки неограниченного числа новых правил.

Так как правила могут быть сохранены как данные, то легко формировать наборы правил, не изменяя при этом программного кода системы JWARS.

Самые простые правила JWARS используют элементарные логические отношения (больше чем, и, или, и т. д.), в то время как более сложные рассуждения о том, благоприятна ли ситуация или нет, строятся на основе более сложных отношений (если, то, иначе).

Одной из тенденций развития этого инструментария системы JWARS будет реализация в скором времени возможности построения логических причинно-следственных правил на основе математического аппарата нечеткой логики.

Для облегчения применения пользователем нечетких правил будет реализована система автоматизированной помощи и интуитивно понятного графического интерфейса. ; Подразделения в системе JWARS имеют разнообразные возможности и могут выполнять различные действия или задачи одновременно, если они не противоречат друг другу (например, оставаться на месте и передвигаться). Действия подразделения могут быть изменены в зависимости от полноты данных о ситуации. Например, сталкиваясь с превосходящими силами противника, подразделение, обладающее неполной информацией относительно местоположения других дружественных союзных сил, может отступить, пока ситуация не станет более определенной. Чем более сомнительна ситуация, тем раньше будет начато отступление. Как только ситуация определится, могут быть предприняты специальные действия, соответствующие моменту. Подразделение должно использовать все имеющиеся в его распоряжении ресурсы для того, чтобы решить поставленные задачи, не нарушая ограничений, например, касающихся числа потерь личного состава и техники.

В более ранних версиях JWARS, в которых не было системы причинно-следственных связей на тактическом уровне, отмечались случаи, когда в процессе моделирования боевые подразделения вместо вступления в бой продвигались к своим целям, лишь отвечая огнем. Встречались также случаи, когда подразделения неуместно вступали в бой. База знаний причинно-следственных связей позволила улучшить возможности по оценке ситуации и вносить изменения в варианты боевого применения подразделений. Как показано на рисунке на с. 32, подразделение атакует противника, сближается с ним, уничтожает его или заставляет отступить, а затем возобновляет выполнение первоначального задания. Тем временем подразделения обеспечения, как свои, так и противника, оценивают ситуацию как опасную и пытаются не попадать в зону ведения огня.

Правила JWARS могут быть легко связаны с определенными типами подразделений. Это позволяет пользователям формировать новые подразделения и автоматически назначать им соответствующие наборы правил и действий, основанные на различных комбинациях характеристик. Любое подразделение, созданное как боевое (бронетанковое, пехотное и т. п.), может унаследовать эти правила. Однако некоторые правила для небольших подразделений (группы глубинной разведки, группы специального назначения) могут быть более важными по отношению к общим боевым правилам.

Для обеспечения действий небоевых подразделений разрабатываются соответствующие правила, которые, например, заставляют их менять курс, чтобы избежать столкновений с противником. Боевые и небоевые подразделения, подчиняясь приказу общего начальника о перемещении в определенное местоположение, определяют свой маршрут на основе имеющихся правил. В связи с этим возможны существенные различия в их маршрутах.

Практика использования JWARS показывает, что наборы нечетких правил - это хороший инструмент для принятия сложных решений, так как они не только обеспечивают возможность выбора среди предопределенных вариантов действий, но и позволяют генерировать новые. Однако в этой системе в основном все еще используются стандартные, а не нечеткие правила в связи с полнотой наборов стандартных правил и их простотой использования при принятии структурированных решений. Большинство экспертов считает, что стандартные правила гораздо проще формулировать. Однако в перспективных версиях JWARS будут улучшены инструменты редактирования и автоматизированной проверки нечетких правил с целью облегчения работы с ними.

Один из ключевых аспектов деятельности военных подразделений - совместные действия. Поскольку одна из главных функций системы - это оценка эффективности действий различных структур, совместные действия должны быть очень гибким компонентом модели. Например, обеспечение ресурсами подразделений в JWARS может осуществляться из многочисленных источников, часть из которых в определенных условиях обстановки предпочтительнее, но при этом любой из них отвечает минимальным требованиям. Понимание этого компромисса будет главной задачей применения баз знаний в областях совместного использования ограниченных ресурсов.

Подразделения в системе JWARS не договариваются о совместных действиях и не формируют временные коалиции, а запрашивают дополнительные ресурсы и используют запасы, основываясь на оценке ситуации. Таким образом, подразделение, участвующее в боевых действиях, может запросить дополнительную огневую поддержку и получить ее от одного или более источников в зависимости от расставленных приоритетов. При следующем запросе в качестве обеспечивающего может выступить другое подразделение или вид оружия, но в любом случае поддержка будет осуществляться, пока не исчерпаны все ресурсы.

В целом необходимо отметить, что развитие систем моделирования и имитации в США рассматривается как один из основных факторов обеспечения эффективности строительства и применения ВС. Громадный потенциал, накопленный в данной области, уже сейчас оценивается как значительно опережающий возможности других стран мира в этой сфере. В перспективе ожидается дальнейшее глобальное комплексирование моделей и внедрение систем виртуальной реальности (искусственного многомерного боевого пространства) на базе телекоммуникационных сетей, призванных обеспечить доступ пользователей как к оперативной, так и физической моделируемой среде, стандартизированным моделям и базам данных, а также к различного рода сценариям. Перспективные системы моделирования боевых действий будут имитировать применение ВС на любом континенте, на море, в воздухе и космическом пространстве, весь спектр их задействования (включая миротворческие операции, борьбу с терроризмом и т. п.). Системы будущего смогут с высокой степенью точности моделировать действия на фоне искусственно созданной боевой обстановки, воспроизводящей особенности любого ТВД. В качестве противника будут выступать как полностью, так и частично компьютеризированные «аналоги» реальных войсковых формирований.

1 По степени задействования человека зарубежные специалисты четко разделяют все средства моделирования и имитации на натурные, виртуальные и конструктивные. Конструктивные средства предполагают применение виртуальных войск (сил) в виртуальном боевом пространстве.

2 Под HLA-архитектурой понимается структура имитационной системы на уровне взаимосвязей отдельных компонентов, а также стандарты, правила и спецификации интерфейсов, определяющие взаимодействие моделей при разработке, модификации и функционировании.

Зарубежное военное обозрение №11 2008 С. 27-32

Подполковник Д. Малышев,
кандидат военных наук;
К. Сычев

Оперативная и боевая подготовка (ОБП) является важнейшим инструментом развития вооруженных сил, обеспечивающим рост возможностей подразделений, поддержание их высокой боеготовности и способности быстро реагировать на любые угрозы безопасности, в том числе в условиях сокращения численности ВС, модернизации и повышения эффективности систем вооружения и трансформации характера самих угроз.

Практически все учения в ВС ведущих зарубежных стран (ВЗС) проводятся сегодня с использованием компьютерных средств моделирования боевой обстановки, что способствует достижению стратегической внезапности, высокой скрытности мероприятий, направленности подготовки войск (сил) и повышению эффективности ОБП в целом, а также значительной экономии финансовых средств и других ресурсов.

Одной из тенденций развития систем моделирования и имитации является их интеграция в единое информационное пространство (ЕИП). Это позволяет увеличить число одновременно принимающих участие в учении подразделений, выполняющих учебно-боевые задачи с использованием тренажеров. Имитационные комплексы и компьютерные средства моделирования боевой обстановки объединяются со штатным вооружением, военной и специальной техникой на основе глобально распределенных информационно-коммуникационных сетей связи и высокопроизводительных вычислительных комплексов, что обеспечивает отработку учебно-боевых задач подразделениями, дислоцирующимися не только в различных районах одного континента, но и в разных частях земного шара.

Одним из первых мероприятий по организации процесса объединения различных систем моделирования в ЕИП можно считать создание в середине 1980-х годов протокола для сети имитации SIMNET (Simulation Network). Благодаря этому стало возможным объединение географически удаленных систем имитации, что на то время было прорывом.

В дальнейшем на основе SIMNET был разработан более известный стандарт распределенного интерактивного моделирования DIS (Distributed Interactive Simulation). Параллельно ему разрабатывался протокол ALSP (Aggregate Level Simulation Protocol) для интеграции систем имитации боевых действий различного уровня (от тактического до оперативно-стратегического).

В результате объединения стандарта DIS и протокола ALSP в середине 1990-х годов появился новый стандарт так называемой архитектуры высокого уровня (High Level Architecture - HLА), который активно используется и развивается в настоящее время.

Важным этапом в области моделирования и имитации стало создание по указанию конгресса США в 1990 году управления моделирования МО США (Defense Modeling and Simulation Office -DMSO). Одной из его задач еще в 1991 году являлась разработка архитектуры интеграции натурных, виртуальных и конструктивных средств моделирования (Live Virtual Constructive - Integration Architecture - LVC-IA), что положило начало созданию концепции интегрированной среды распределенных средств моделирования боевой обстановки (для краткости в этой статье будет использоваться термин "интегрированная среда JLVC").

Интегрированная среда JLVC (Joint Live Virtual Constructive) - это объединение натурных (L - Live, реальные войска, применяющие специальные датчики, или сенсоры, для обмена оперативными данными), виртуальных (V - Virtual, тренажеры или симуляторы) и конструктивных (С -Constructive, виртуальные войска, действия которых имитируются на компьютере) средств моделирования в едином информационном пространстве для отработки задач ОБП.

Тенденции развития средств моделирования и имитации в интересах обеспечения оперативной подготовки штабов и боевой подготовки войск (сил) определяются общими направлениями развития самой системы ОБП, которые, в свою очередь, диктуются изменениями в доктринальных установках строительства вооруженных сил. В связи с этим в ВС США был разработан ряд инициатив, включенных в план министерства обороны по выполнению программ развития подготовки национальных вооруженных сил на пятилетний период (2006-2011) 1 . Две из них непосредственно касаются интегрированной среды JLVC: "Возможность совместной подготовки национальных вооруженных сил" и "Натурные, виртуальные и конструктивные средства обеспечения подготовки".

В рамках обеих программ было запланировано повышение эффективности мероприятий ОБП, проводимых посредством моделирования совместных и самостоятельных операций и боевых действий. Предполагалось, что такие учения можно реализовать путем интеграции в единую сеть функционально совместимых учебных объектов (полигонов, городков, полей и т. п.), в том числе специальных устройств, генерирующих виртуальные группировки войск (сил). Моделирование тактических и оперативно-стратегических действий группировок войск (сил) должны соответствовать руководящим требованиям объединенных командований и видов вооруженных сил.

В интересах совершенствования системы оперативной и боевой подготовки в рамках МО США на уровне заместителей министра и руководителей управлений центрального аппарата были созданы рабочие группы по анализу проблем и недостатков применения средств моделирования и имитации в этой сфере. Так, в области концепции интегрированной среды JLVC были выделены проблемные места, требующие:
- создания многоуровневой и многофункциональной системы натурных, виртуальных и конструктивных средств моделирования (LVC environment), которая улучшит качество учений с применением авиационного вооружения и в целом будет способствовать проведению оперативной и боевой подготовки в области совместного применения авиационного и ракетного вооружения;
- обеспечения соответствия интегрированной среды JLVC принципам модульности и адаптивности;
- повышения эффективности моделей, так как крупномасштабные учения требуют применения более простых средств моделирования и имитации, которые должны обеспечивать разработку и сопровождение сценариев учения с гораздо меньшими временными издержками.

Согласно инициативе "Объединенная оценка и имеющиеся возможности", описанной в "Плане развития моделирования и имитации в сфере ОБП" 2 , в 2008-2009 годах под руководством аппарата министра обороны США был проведен очередной анализ возможностей в сфере оперативной и боевой подготовки и разработан соответствующий документ, в котором представлены результаты анализа возможностей по обеспечению проведения ОБП конструктивными (компьютерными) системами имитации, тренажерами, симуляторами и интерфейсами доступа к штатным системам боевого управления, связи и разведки.
Таких специализированных функциональных "кластеров" прикладных средств моделирования и имитации (так называемых федераций 3 ) в рамках министерства обороны США сформировалось несколько. Одним из них является федерация JLVC (JLVC Federation), реализующая концепцию создания интегрированной среды JLVC, которую курирует объединенный штаб КНШ.

Технические и организационные возможности федерации по обучению представителей объединенного штаба, других силовых и не силовых ведомств и министерств, а также союзных государств позволяют подразделениям регулярных войск и резервного компонента американских вооруженных сил, органам внутренних дел, ВС других государств, международным организациям (например, Международный комитет Красного Креста) отрабатывать учебно-боевые задачи в тесном взаимодействии со штабами объединенных и видовых командований.

В настоящее время интегрированная среда JLVC дает возможность проводить мероприятия совместной подготовки группировок войск (сил) численностью до 20 тыс. человек и объединять в виртуальной среде более чем 1 200 географически удаленных друг от друга объектов. Ежегодная продолжительность обучения до 10 тыс. ч 4 . Федерация JLVC позволяет моделировать боевые действия с участием формирований бригадного состава.

В качестве примера можно привести учения "Талисман сейбр", которые проводились в 2009 году. В них принимали участие ВС Австралии и формирования национальной гвардии американских штатов Род-Айленд, Флорида и Гавайи. Объединение средств имитации осуществлялось через архитектуру HLA и стандарт DIS, подключенные к компьютерной сети министерства обороны Австралии DTEN (Defense Training and Experimentation Network). К учениям привлекались формирования 3-й дивизии морской пехоты США и многонациональные оперативные силы, в состав которых входили подразделения ВВС, СВ и ВМС Австралии. В ходе них отрабатывались следующие задачи: оперативное и тактическое взаимодействие в операциях постконфликтного урегулирования и по поддержанию мира, а также повышение боеготовности ВС стран-участниц.

Основными конструктивными системами, входящими в состав интегрированной среды JLVC, являются:
- система JTLS (Joint Theater Level Simulation) - интерактивная многопользовательская система, предназначенная в основном для моделирования и имитации операций на театре военных действий объединенными и коалиционными группировками войск (сил). В ней предусмотрена имитация решения боевых задач, которые могут быть поставлены объединенным оперативным формированиям и их компонентам, а также формированиям сил специальных операций, органам разведки, силам и средствам тыла;
- система JCATS (Joint Conflict and Tactical Simulation) , которая позволяет осуществлять моделирование боевых действий во всем спектре операций. В последнее время она применяется для выполнения этой задачи в населенных
пунктах, когда количество учитываемых объектов составляет от 25 тыс. до 40 тыс.;
- система моделирования боевых действий авиации AWS1M (Air Warfare Simulation) ;
- объединенная система моделирования боевых действий JSAF (Joint Semi-Automated Forces) ;
- система моделирования тактического уровня TACSIM (Tactical Simulation) , моделирование сбора и передачи разведывательной информации;
- национальная система имитации боевых действий NWARS NG (National Wargaming Simulation Next Generation) ;
- модуль объединенной системы имитации материально-технического обеспечения войск (сил) JDLM (Joint Deployment Logistics Module) .

Перспективным направлением развития интегрированной среды JLVC является так называемое раздельное построение ее функциональных компонентов. Основная часть состоит из уровня интерфейсов, моделирования боевых действий и окружающей обстановки, а также из сервера данных и его программного обеспечения. Предполагается, что каждый из этих уровней будет независимым для модернизации от остальных, что позволит сократить временные затраты, масштаб изменений среды и тем самым суммарную стоимость.

ВОЕННАЯ МЫСЛЬ № 12/1987, стр. 36-44

УПРАВЛЕНИЕ ВОЙСКАМИ

Б. А. КОКОВИ X ИН ,

контр-адмирал запаса, кандидат военно-морских наук, доцент

В статье излагается сугубо личное мнение автора. Приглашаем читателей высказать свое отношение к рассматриваемым в ней вопросам.

В ДАННОЙ статье рассматривается вопрос создания математических моделей (методик) для обоснования расчетами решений, принимаемых командующими (командирами) при подготовке и ведении боевых действий. В принципе эта проблема существует в течение всей истории войн и военного искусства, но наиболее остро встала в XX веке в связи с появлением и быстрым развитием новых видов оружия и техники. В настоящее время она заключается в том, чтобы создать такие математические модели, которые могли бы полнее обеспечивать практическую деятельность командующих (командиров) и их штабов.

Из-за ряда обстоятельств эта задача полностью еще не решена. Долгое время считалось, что основные трудности и неудачи в ее решении обусловлены недостаточными возможностями вычислительной техники и математики. При современном уровне их развития эта точка зрения становится неубедительной и несостоятельной. Сейчас первоочередное внимание уделяется методологической стороне проблемы. Поэтому прежде всего необходимо вскрыть, проанализировать и устранить причины, затрудняющие создание приемлемых для практики моделей операций (боевых действий). На мой взгляд, первая (главная) причина лежит в области основных понятий (категорий) теории войны и военного искусства, а поэтому прежде всего важно точно знать, что представляют собой вооруженная борьба и составляющие ее военные действия, называемые удар, бой, сражение, операция, каковы их сущность, внутреннее, объективно необходимое содержание и структура, как они взаимосвязаны между собой, чем отличаются друг от друга.

К сожалению, на эти вопросы, как мне представляется, нет четких, ясных, логически обоснованных ответов. Например, «боевые действия» теория определяет так: 1) организованные действия частей, соединений всех видов ВС при выполнении поставленных боевых задач. К боевым действиям оперативно-стратегического и стратегического масштаба обычно применяют термин «военные действия»; 2) форма оперативного применения объединений и соединений видов ВС в рамках операции (или между операциями) в составе объединения более крупного масштаба. Разновидностями боевых действий являются систематические боевые действия как особая форма оперативного применения объединений войск ПВО, ВВС, ВМФ. Эти неясные, противоречивые, неподдающиеся логическому объяснению определения, на мой взгляд, порождены масштабной классификацией, согласно которой действия войск принято подразделять на боевые, оперативные и стратегические не в зависимости от их сущности и объективно необходимого содержания, а «в зависимости от масштаба вооруженной борьбы, возможностей войск (сил), цели и характера боевых задач».

Возникает вопрос: можно ли разработать практически приемлемые математические модели, не оперируя достаточно точными и глубокими основными понятиями (категориями) военного искусства? Вообще можно. Но к чему это ведет? Прошло много лет, затрачено немало сил и средств, но проблема так и не нашла своего полного теоретического и практического решения. Более того, порой поднимается вопрос, в том ли направлении ведутся исследования. Если необходимые модели создавать без строгих и глубоких теоретических обоснований, получаемые с их помощью результаты не будут заслуживать полного доверия. «Нельзя успешно двигаться вперед методом проб и ошибок. Это дорого обходится обществу». Следовательно, для обеспечения надежного, теоретически обоснованного решения проблемы прежде всего надо уточнить и углубить наши понятия о сущности, содержании, структуре вооруженной борьбы, составных частях военного искусства.

Для этого требуется.

Первое. Твердо придерживаться марксистско-ленинского определения войны как организованной вооруженной борьбы между государствами или классами внутри государства, которая по своей социально-политической природе есть «продолжение политики насильственными средствами». «Насилие - это в настоящее время армия и военный флот...» (К. Маркс и Ф. Энгельс. Соч., т. 20, с. 171). Политическая, экономическая, идеологическая и другие формы борьбы не только не прекращаются, а, наоборот, ожесточаются во время войны, оказывая в конечном итоге решающее влияние на ее исход, что, однако, не изменяет сущности и объективно необходимого содержания войны как вооруженной борьбы. Данное в Советской Военной Энциклопедии определение войны как совокупности всех форм борьбы, включая и вооруженную, повторяет устаревшую точку зрения, существовавшую еще в начале XIX века. Я считаю, что такое определение искаженно отражает действительность, вносит путаницу в понимание предмета военной науки, затрудняет решение теоретических и прикладных проблем, в том числе и моделирования операций (боевых действий). Исторический опыт подтверждает, что военная наука всегда занималась и занимается войной как вооруженной борьбой и военным искусством, а поэтому теория войны и военного искусства - это и есть собственно «военная» наука, ее философская (фундаментальная) часть.

Второе . Отделить теорию войны и военного искусства от теоретических описаний типовых вариантов ведения войны и военных действий в зависимости от складывающихся условий военно-политической обстановки в мире и взглядов военного руководства противостоящих сторон Дело в том, что типовые варианты и взгляды в форме уставных положений подменили военную науку. Офицерский корпус командно-штабной специальности учится, работает, обучает подчиненных не по науке, а по взглядам; действия своих войск организуются по нашим взглядам, противник оценивается по его взглядам. Все это неизбежно ведет к принятию шаблонных решений, которые не могут в полной мере обеспечить разработку математических моделей, приемлемых для штабов.

Третье. Обучение офицерского состава и лиц, привлекаемых к моделированию военных действий, необходимо начинать с доказательства истинности (соответствия объективной действительности) категорий военной науки, подобно тому, как, например, в геометрии доказываются теоремы. В. И. Ленин подчеркивал: «Категории надо вывести (а не произвольно или механически взять) (не «рассказывая», не «уверяя», а доказывая)...» (Полн. собр. соч., т. 29, с. 86). Это позволит обучаемым одновременно познать сущность способов стратегических, оперативных, боевых действий и теорию военного искусства в целом.

В работе «Категории военного искусства в свете материалистической диалектики» сделана попытка вывести категории войны и военного искусства, уточнить и свести их во взаимосвязанную систему, сформулировать следующие основные положения.

Действия войск (сил) в войне («военные» действия) включают развертывание, переразвертывание и создание группировок: на театре военных действий - для ведения взаимосвязанных операций («стратегические» действия); в операции - для ведения взаимосвязанных боев («оперативные» действия); в бою - для взаимосвязанного применения оружия, а также само его применение по противнику («боевые» действия). Следовательно, в современных условиях при ведении войны только обычным оружием военные действия - это совокупность стратегических, оперативных и боевых (тактических) действий. В принципе они могут вестись любым количеством войск, но верхний предел их целесообразно ограничивать таким количеством, при дальнейшем увеличении которого вероятность выполнения поставленной задачи практически остается на том же уровне.

Вооруженная борьба и составляющие ее военные действия ведутся не вообще, как кто хочет, а объективно необходимыми способами, которыми являются бой, операция, перегруппировка, военные действия. Способ - это организованные определенным образом действия войск данного состава при выполнении поставленной задачи в конкретных условиях сложившейся обстановки. Военные действия, как бы они ни назывались, есть не что иное, как проявление сущностей основных способов при различном их сочетании. При этом действия войск как одной, так и другой стороны в ходе войны непрерывно переходят друг в друга в строго определенной последовательности, которую невозможно изменить. Сущность их заключается в объединении и сосредоточении усилий, возможностей войск там и в тот момент, где и когда это необходимо. В бою это достигается путем объединения огневой мощи для поражения тех объектов (группировок) противника, уничтожением (выводом из строя) которых обеспечивается выполнение поставленной задачи. Такой путь позволяет значительно увеличить общую силу натиска или сопротивления войск, по отношению к арифметической сумме индивидуальных возможностей боевых единиц создать необходимое превосходство над противником и нанести ему поражение. В операции - объединением конечных результатов действий войск во всех боях, составляющих данную операцию, для поражения тех группировок и объектов противника, уничтожением которых обеспечивается выполнение поставленной задачи.

При этом предполагается не только поражение избранных объектов, но и использование результатов действий войск в одних боях для повышения их эффективности в других. При перегруппировке на ТВД - путем развертывания и переразвертывания войск при всестороннем их обеспечении в целях своевременного создания полностью подготовленных группировок для ведения операций в решающем месте и в решающий момент войны; в войне - объединением и использованием во взаимных интересах конечных результатов действий войск во всех операциях, направленных на разгром вооруженных сил противника на данном театре военных действий, а также путем своевременного создания всесторонне обеспеченных группировок для ведения запланированных операций.

На основании изложенного можно сказать, что для практической деятельности командующих (командиров) и их штабов требуется разрабатывать математические модели способов ведения боя (операции) на основе того качественного и количественного состава войск, который выделен или может быть выделен для выполнения поставленной задачи с учетом внутренней структуры войны и военного искусства (схема 1). При их создании важно также учитывать естественно-исторический процесс развития и смены способов ведения войны, составляющие ее военные действия в зависимости от появления и развития новых видов оружия и технических средств (схема 2).

Четвертое. Теорию войны и военного искусства, т. е. философскую (фундаментальную) часть военной науки, необходимо вывести из узковедомственного подчинения и передать в Академию наук СССР, где она должна быть представлена наравне со всеми другими общественными науками. Это, на мой взгляд, единственно реальный путь, способный поднять военную науку на более высокий, качественно новый уровень, обеспечивающий надежное, теоретически обоснованное решение многих прикладных проблем, в том числе и моделирования военных действий.

Вторая причина трудностей в разработке моделей заключается в том, что сейчас к ним предъявляется требование - учесть по возможности все факторы, которые могут влиять на организацию и ведение операции (боевых действий). Это неизбежно ведет к резкому увеличению непредсказуемой исходной информации. Такие модели могут быть использованы лишь в исследовательских целях, но не для работы командующих (командиров) и штабов при планировании военных действий.

В настоящее время модели разрабатываются заранее и представляют собой математический аналог типового боя (операции), в котором в максимально возможной степени учитываются: существующая организационная структура войск (сил), их штатный количественный и качественный состав; типовые параметры различных военных действий, зафиксированные в руководящих документах; конкретные военно-географические условия театров военных действий и др. Причем это касается как наших войск, так и противника. В жизни конкретные военные действия никогда полностью не совпадают с типовыми. Учитывая, что организация, штатный состав войск (сил) и другие условия непрерывно и быстро изменяются, разработанные модели также теряют свою практическую ценность. Это третья причина.

Четвертая заключается в том, что специалисты в области военного искусства (операторы) активно участвуют в создании типовых математических моделей военных действий, моделируют их только в части, касающейся разработки словесной модели в виде формулирования возможных вариантов решений воюющих сторон. Исходная информация закладывается заранее. Недостающая ее часть, необходимая для того, чтобы модель «работала» в условиях конкретной обстановки, периодически уточняется и выбирается из так называемой постоянной информации.

Общий недостаток штабных моделей заключается в том, что с их помощью можно оценить только одну сторону военного искусства командира (командующего), принимающего решение, которая характеризует его умение организовывать действия войск в целях максимального использования их потенциальных возможностей. Вторая (с точки зрения военного искусства более сложная и трудная сторона) - использование, а при возможности и создание (путем введения противника в заблуждение, быстрого и неожиданного маневра войск и т. д.) условий, позволяющих ослабить противника и значительно увеличить объединенные усилия своих войск на главном направлении в решающий момент боя (операции),- существующими моделями оценивается слабо.

На основании изложенных выше положений, касающихся теории войны и военного искусства, мною предлагается один из возможных подходов, который может обеспечить создание практически приемлемых для штабов математических моделей военных действий . Суть его сводится к следующему.

Каждая модель боя (операции) должна уточняться соответствующим командующим (командиром) и его штабом на основе той информации, которой они располагают в период выработки и принятия решения, при определении только замыслов действий противостоящих сторон.

Почему только замыслов?

Исторический опыт свидетельствует о том, что фактический ход военных действий обычно соответствовал именно замыслам действий сторон и никогда не совпадал полностью с подробно разработанными решениями (планами) независимо от того, какая сторона (наступающая или обороняющаяся) достигла или не достигла своей цели. Например, немецко-фашистская армия, военачальники которой отличались скрупулезностью, особенно при планировании внезапного нападения, успешно начала войну против Советского Союза и вела ее в 1941 году в соответствии с замыслом, положенным в основу плана «Барбаросса». Однако в дальнейшем ход событий значительно отличался от плана. Б конечном итоге цель войны не была достигнута из-за недостаточной обоснованности ее замысла: не были учтены единство, сплоченность советского народа и беспримерный героизм наших воинов.

Таким образом, модель, разработанная на основе информации, описывающей подробно предстоящий ход военных действий сторон, будет заведомо не соответствовать фактическому ходу событий, и результаты расчетов окажутся весьма сомнительными. При применении предлагаемого подхода важно, чтобы в формулировках замыслов действий сторон четко просматривалась сущность военного искусства, которая, на мой взгляд, заключается в умении стать сильнее противника, создать подавляющее превосходство над ним в решающий момент и в решающем месте войны и составляющих ее военных действий. (Здесь речь идет не о создании общего военного превосходства в глобальном масштабе, чего добиваются Соединенные Штаты Америки, а об искусстве (умении) победить имеющимися силами агрессора в случае его нападения). Понимание этого является той основой, которая объединяет в диалектическом единстве стратегию, оперативное искусство и тактику. Вместе с тем каждая составная часть военного искусства имеет свою сущность. Но, по моему мнению, сущность стратегии, оперативного искусства и тактики состоит в умении создать подавляющее превосходство над противником в решающий момент, в решающем месте путем объединения и взаимного использования конечных результатов всех операций (боев), направленных на достижение поставленной цели, а также в способности применять условия конкретной обстановки в интересах своевременного развертывания всесторонне обеспеченных группировок для ведения запланированных операций (боев).

Разработка моделей (производство расчетов) и анализ их результатов могут иметь следующий порядок: определяются общее соотношение сил сторон в районе проведения операции (боя) к моменту ее начала, а также варианты замыслов действий противника и своих войск; выбирается критерий оценки возможных замыслов; вычисляются по избранному критерию ожидаемые результаты при всех сочетаниях вариантов их замыслов; анализируются результаты и выбирается наиболее целесообразный замысел операции (боя).

При определении каждого варианта действий той и другой стороны, избираемого для оценки, требуется сформулировать: где (на каком направлении, в каком районе, в какой зоне, полосе и против каких объектов противника), когда (в какой момент, период) и как (каким путем, способом, приемом и т. п.) необходимо создать подавляющее превосходство над противником. Изменение ответа хотя бы на один изэтих вопросов рождает новый вариант замысла действий данной стороны.

Критерием оценки вариантов действий сторон при всех возможных их сочетаниях может служить вероятность нанесения поражения противнику (выполнения поставленной задачи) или соотношение сил сторон на главном направлении в решающий момент операции (боя). Переведя это на язык математики, можно сказать: на главном направлении в решающий момент надо суметь (именно «суметь» - в этом заключается искусство военачальника в пределах материальных возможностей войск) создать такое соотношение сил в свою пользу, при котором поставленная задача была бы выполнена с вероятностью, например, не менее 0,8. При этом следует подчеркнуть, что речь идет о качественном соотношении сил сторон, выраженном количественными величинами. Такая вероятность поражения служит критерием, обеспечивающим выбор наиболее целесообразных вариантов замысла предстоящей операции.

Анализ результатов расчетов и выбор оптимального варианта замысла операции (боя) целесообразно производить с помощью теории игр. При этом следует иметь в виду, что в данном случае определяются такие варианты, применяя которые противостоящие стороны не рискуют проиграть больше или выиграть меньше, чем это возможно по избранному критерию в данной обстановке.

Если противник равный или сильнее как по составу войск, так и по уровню военного искусства, выбор «гарантированных» замыслов никогда не сможет обеспечить достижение победы. Поэтому в предлагаемом методе моделирования операции (боевых действий) для анализа с помощью теории игр нужно отобрать только те варианты замыслов сторон, при которых достигается подавляющее превосходство над противником в решающий момент, в решающем месте боя (операции). Естественно, это рискованно, но без этого победить сильного противника нельзя. Из них можно выбрать относительно лучший по критерию, который должен установить командующий (командир), вырабатывающий замысел.

Применение предлагаемого подхода к созданию математических моделей попытаемся показать на двух классических примерах.

В известном сражении при Каннах (216 г. до н. э.) карфагенский полководец Ганнибал, несмотря на двойное общее численное превосходство противника, почти полностью уничтожил римское войско. Общий численный состав и потери сторон были следующими:

Это была не случайная победа. Еще до начала боя Ганнибал поставил перед собой цель не просто добиться успеха, а полностью уничтожить римскую армию. Свой замысел он искусно претворил в жизнь.

Римская пехота была построена в боевой порядок (фалангу), имеющий не менее 34 шеренг в глубину и около 1700 человек по фронту. Конница располагалась на флангах. Войска Ганнибала строились в шесть колонн, из которых две средние (общим числом 20 тыс. человек) состояли из слабой испанской и недавно навербованной галльской пехоты. Их окаймляли две колонны по 6 тыс. африканских испытанных ветеранов. На флангах пехоты находились кавалерийские колонны: на левом - тяжеловооруженная конница (кирасиры Газдрубала), на правом- легкая конница (преимущественно нумидийская).

Дальнейший ход событий был следующий. С началом боя конница Газдрубала опрокинула римских всадников, частью сил помогла нумидийской коннице обратить в бегство римских всадников на левом фланге римской пехоты и главными силами бросилась на тыл фаланги, заставив ее сначала повернуться назад, а потом остановиться. В центре фронта после короткой схватки римляне решительно атаковали галлов и испанцев, нанесли им большие потери и заставили карфагенский Центр попятиться. Личное присутствие здесь Ганнибала удержало галлов от разрыва фронта и бегства. В этот решительный момент под влиянием удара с тыла римская фаланга остановилась, что означало ее гибель, только крайние шеренги окруженной толпы римских легионов могли действовать оружием, а задние - представляли мишень для летящих камней, дротиков и стрел. Исход боя был решен. Дальше было побоище.

Исходя из фактического хода событий, словесную модель действий карфагенских войск, т. е. замысел Ганнибала, можно сформулировать так: малыми силами сдержать первый натиск фаланги римской пехоты в центре, смести римскую конницу на флангах, полностью окружить и ударом с тыла остановить продвижение фаланги, лишив ее тем самым наступательной силы, и, используя ее неповоротливость и слабую обученность римской пехоты, полностью разгромить противника. Замысел римского полководца Сервилия: всю силу пехоты направить на центр боевого построения карфагенян, решительной атакой смять противника, обратив его в бегство, после чего поочередно разбить разрозненные Части пехоты и кавалерии.

Суть сложившейся конфликтной ситуации и весь расчет сводятся здесь к решению одного вопроса: у кого было больше шансов - у Ганнибала, чтобы сдержать натиск римской фаланги в центре до того момента, когда конница Газдрубала нанесет по ней удар с тыла и остановит ее, или у Сервилия, чтобы сокрушить центр боевого построения карфагенян, прежде чем остановить и перестроить фалангу для действий на других направлениях? Математического описания самих действий войск сторон для решения этого вопроса не требуется.

Проанализировав, как говорится, «обратным ходом» конечный результат боя с позиций сущности военного искусства, можно сказать, что в решающий момент боя на решающем направлении (в центре) Ганнибал сумел создать (за счет удара, по фаланге с тыла) подавляющее (по меньшей мере четырехкратное) превосходство над противником и тем самым не допустил сокрушения центра своей пехоты.

В ходе Великой Отечественной войны при ведении военных действий на сталинградском направлении сложилась ситуация, аналогичная рассмотренной выше, только при другом общем количественном соотношении войск воюющих сторон и значительно большем размахе военных действий. Судя по фактическому ходу событий, общий замысел наших войск заключался в том, чтобы малыми силами удержать правый берег Волги в районе Сталинграда, сосредоточить на флангах немецко-фашистской группировки превосходящие силы, сходящимися ударами окружить и уничтожить ее.

Для обоснования этого замысла, на мой взгляд, достаточно создать такую математическую модель, которая решала бы один вопрос: кто имеет больше шансов - наши войска, чтобы удержать плацдарм на правом берегу Волги по меньшей мере до полного окружения противника, или противник, которому необходимо было сбросить наши обороняющиеся войска в Волгу прежде, чем повернуть свои войска навстречу нашим наступающим войскам? Разрабатывать для обоснования данного замысла сложную математическию модель таких крупномасштабных военных действий было бы нецелесообразно: она не дала бы более точных, заслуживающих доверия результатов. Скорее наоборот.

Конечно, анализируя отдельные примеры, нельзя делать категоричных выводов. Но некоторые соображения высказать можно.

Первое. Модели, не учитывающие военное искусство полководцев, будут неполно отражать объективную действительность и всегда давать однозначный ответ: победит сторона, которая имеет численное превосходство и большие материальные возможности. Применение таких моделей научит офицеров побеждать числом, а не умением. Чтобы учесть в математических моделях уровень военного искусства и выработать соответствующие коэффициенты, необходимо тщательно проанализировать исторический опыт, как это показано выше на двух примерах.

Второе. Основным условием успешного использования предлагаемого подхода является умение выявлять суть конфликтных ситуаций, складывающихся при подготовке и ведении военных действий, и оценить их с точки зрения сущности военного искусства.

Третье. Чем короче, четче и яснее сформулированы замыслы действий сторон, тем легче выявить сущность складывающейся конфликтной ситуации и определить вопрос, требующий расчетов для своего решения. Чем проще модель, тем она ближе к действительности, менее искаженно ее отражает, требует меньше исходной информации. Очевидно, что и математический аппарат для таких моделей также будет несложным (в пределах теории вероятностей и теории игр).

Напомним, что предлагаемый подход относится только к моделям для обоснования замыслов принимаемых решений. Математические модели для исследовательских целей, графического отображения на экране принимаемых решений по текущей обстановке и другие здесь не рассматриваются.

В заключение отметим, что заслуживает внимания еще один в общем-то известный подход к созданию моделей (которые условно можно назвать «дуэльными»), когда командующий (командир) играет «шахматную партию» с ЭВМ, имитирующей противника. Конечно, этот путь сложный, трудоемкий, но, на мой взгляд, перспективный с точки зрения повышения эффективности обучения офицеров военному искусству.

Математическая модель и методика оперативно-тактических расчетов - одно и то же.

Военная Мысль.- 1987.- № 7.- С 33-41

Военный энциклопедический словарь.- М.: Воениздат, 1986.- С. 89

Там же.-С. 145.

Материалы Пленума Центрального Комитета КПСС, 25-26 июня 1987 г.- М. Политиздат, 1987.-С. 12.

Советский энциклопедический словарь.- М.: Сов. энциклопедия, 1983.- С. 238

Военный энциклопедический лексикон.- Ч. III.- СПб, 1839.- С. 454.

Морской атлас-Т. III.- Ч. 1.-МО СССР, 1958 -Л. 1,

Для комментирования необходимо зарегистрироваться на сайте