Физика атомного ядра. Экспериментальные методы регистрации элементарных частиц




Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод). Трубка заполняется газом, обычно аргоном. Заряженная частица (электрон, а-частица и т.д.), пролетая в газе, отрывает от атомов электроны и создает положительные ионы и свободные электроны. Электрическое поле между анодом и катодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Принцип действия Возникает лавина ионов, и ток через счетчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подается в регистрирующее устройство.


Особенности Для того чтобы счетчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически. Счетчик регистрирует почти все попадающие в него электроны; что же касается γ-квантов, то он регистрирует приблизительно только один γ - квант из ста. Регистрация тяжелых частиц (например, α-частиц) затруднена, так как сложно сделать в счетчике достаточно тонкое «окошко», прозрачное для этих частиц.


Камера Вильсона В камере же Вильсона, созданной в 1912 г., быстрая заряженная частица оставляет след, который можно наблюдать непосредственно или сфотографировать. Этот прибор можно назвать «окном» в микромир, т. е. мир элементарных частиц и состоящих из них систем.


Принцип действия Камера Вильсона представляет собой герметически закрытый сосуд, заполненный парами воды или спирта, близкими к насыщению. При резком опускании поршня, вызванном уменьшением давления под поршнем, пар в камере расширяется. Вследствие этого происходит охлаждение, и пар становится пересыщенным. Это неустойчивое состояние пара: пар легко конденсируется. Центрами конденсации становятся ионы, которые образует в рабочем пространстве камеры пролетевшая частица. Если частица проникает в камеру непосредственно перед расширением или сразу после него, то на ее пути возникают капельки воды. Эти капельки образуют видимый след пролетевшей частицы трек. Затем камера возвращается в исходное состояние и ионы удаляются электрическим полем. В зависимости от размеров камеры время восстановления рабочего режима колеблется от нескольких секунд до десятков минут.


Особенности По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека оценивается ее скорость. Чем длиннее трек частицы, тем больше ее энергия. А чем больше капелек воды образуется на единицу длины трека, тем меньше ее скорость. Частицы с большим зарядом оставляют трек большей толщены Камеру Вильсона можно поместить в однородное магнитное поле. Магнитное поле действует на движущуюся заряженную частицу с определенной силой. Эта сила искривляет траекторию частицы. Трек имеет тем большую кривизну, чем больше заряд частицы и чем меньше ее масса. По кривизне трека можно определить отношение заряда частицы ее массе.


Принцип действия В исходном состоянии жидкость в камере находится под высоким давлением, предохраняющим ее от закипания, несмотря на то что температура жидкости выше температуры кипения при атмосферном давлении. При резком понижении давления жидкость оказывается перегретой и в течение небольшого времени она будет находиться в неустойчивом состоянии. Заряженные частицы, пролетающие именно в это время, вызывают появление треков, состоящих из пузырьков пара. В качестве жидкостей используются главным образом жидкий водород и пропан.


Особенности Длительность рабочего цикла пузырьковой камеры невели­ка около 0,1 с. Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.


Метод толстослойных фотоэмульсий Ионизирующее действие быстрых заряженных частиц на эмульсию фотопластинки позволило французскому физику А. Беккерелю открыть в 1896 г. радиоактивность. Метод был развит советскими физиками Л. В. Мысовским, А. П. Ждановым и др.


Принцип действия Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра. Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При проявлении в этих кристалликах восстанавливается металлическое серебро и цепочка зерен серебра образует трек частицы. По длине и толщине трека можно оценить энергию и массу частицы.


Особенности Из-за большой плотности фотоэмульсии треки получаются очень короткими (порядка см для α -частиц, испускаемых радиоактив­ными элементами), но при фотографировании их можно увеличить. Преимущество фотоэмульсий состоит в том, что время экспозиции может быть сколь угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благо­даря большой тормозящей способности фотоэмульсий увеличивается число наблюдаемых интересных реакций между частицами и ядрами.

Методы регистрации элементарных частиц основаны на использовании систем в долгоживущем неустойчивом состоянии, в которых под действием пролетающей заряженной частицы происходит переход в устойчивое состояние.

Счетчик Гейгера.

Счетчик Гейгера — детектор частиц, действие которого основано на возникновении самостоятельного электрического разряда в газе при попадании частицы в его объем. Изобретен в 1908 г. X. Гейгером и Э. Резерфордом, позднее был усовершенствован Гейгером и Мюллером.

Счетчик Гейгера состоит из металлического цилиндра — катода — и тонкой проволочки, натянутой вдоль его оси — анода, заключенных в герметический объем, заполненный газом (обычно аргоном) под давлением порядка 100-260 ГПа (100-260 мм рт. ст.). Между катодом и анодом прикладывается напряжение порядка 200-1000 В. Заряженная частица, попав в объем счетчика, образует неко-торое количество электронно-ионных пар, которые движутся к соответствующим электродам и при большом напряжении на длине свободного пробега (на пути до следующего стол-кновения) набирают энергию, превосходящую энергию ио-низации, и ионизируют молекулы газа. Образуется лавина, ток в цепи возрастает. С нагрузочного сопротивления им-пульс напряжения подается на регистрирующее устройство. Резкое увеличение падения напряжения на нагрузочном со-противлении приводит к резкому уменьшению напряжения между анодом и катодом, разряд прекращается, и трубка готова к регистрации следующей частицы.

Счетчиком Гейгера регистрируют в основном электроны и γ-кванты (последние, правда, с помощью дополнительного материала, наносимого на стенки сосуда, из которых γ-кванты выбивают электроны).

Камера Вильсона.

Камера Вильсона — трековый (от англ. track — след, траектория) детектор частиц. Создана Ч. Вильсоном в 1912 г. С помощью камеры Вильсона был сделан ряд открытий в ядер-ной физике и физике элементарных частиц, таких, как открытие широких атмосферных ливней (в области космических лучей) в 1929 г., позитрона в 1932 г., обнаружение следов мюонов, откры-тие странных частиц. В дальнейшем камера Вильсона была практически вытеснена пузырьковой камерой как более быстродействующей. Камера Вильсона представляет со-бой сосуд, заполненный парами воды или спирта, близкими к насыщению (см. рис.). Действие ее основано на конденсации перенасыщенного пара (воды или спирта) на ионах, образованных пролетевшей частицей. Перенасыщенный пар создастся резким опусканием поршня (см. рис.) (пар в камере при этом адиабатически расширяется, вследствие чего тем-пература его резко надает).

Капельки жидкости, осевшие на ионах, делают видимым след проле-тевшей частицы — трек, что дает возможность его сфотографировать. По длине трека можно определить энергию частицы, а по числу капелек на единицу длины трека — оценить ее скорость. Помещение камеры в магнитное поле позволяет определить по кривизне трека отношение заряда частицы к ее массе (впервые предложено советскими физиками П. Л. Ка-пицей и Д. В. Скобельцыным).

Пузырьковая камера.

Пузырьковая камера — прибор для регистрации следов (треков) заряженных частиц, действие которого основано на вскипании перегретой жидкости вдоль траектории частицы.

Первая пузырьковая камера (1954 г.) представляла собой металлическую камеру со стеклянными окнами для освещения и фотографирования, заполненную жидким водородом. В дальнейшем она создавалась и совершенствовалась во всех лабораториях мира, оснащенных ускорителями заряженных частиц. От колбочки объемом 3 см 3 размер пузырьковой камеры достиг нескольких кубических метров. Большинство пузырьковых камер имеют объем 1 м 3 . За изобретение пузырь-ковой камеры Глейзеру в 1960 г. была присуждена Нобелевская премия.

Длительность рабочего цикла пузырьковой камеры составляет 0,1 . Преимущество ее перед камерой Вильсона — в большей плотности рабочего вещества, позволяющей регистрировать частицы больших энергий.

Элементарные частицы, а также сложные микрочастицы (a, d и т. п.), удается наблюдать благодаря тем следам, которые они оставляют при своем прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, ее энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, в конечном счете нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. Первую группу образуют устройства, которые регистрируют факт пролета частицы и, кроме того, позволяют в некоторых случаях судить об ее энергии. Ко второй группе относятся трековые приборы, т. е. приборы, позволяющие наблюдать следы (треки) частиц в веществе.

К числу регистрирующих приборов относятся ионизационные камеры и газоразрядные счетчики (см. § 82 2-го тома), а также черенковские счетчики (см. § 147 2-го тома), сцинтилляционные счетчики и полупроводниковые счетчики.

Действие сцинтилляционных счетчиков основано на том, что заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы возбуждают заметную световую вспышку (сцинтилляцию), называют фосфорами. Сцинтилляционный счетчик состоит из фосфора, от которого свет подается по специальному светопроводу к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов (которая пропорциональна интенсивности световых вспышек), что дает дополнительную информацию о регистрируемых частицах.

Полупроводниковый счетчик представляет собой полупро водниковый диод, на который подается напряжение такого знака, что основные носители тока оттягиваются от переходного слоя. Следовательно, в нормальном состоянии диод заперт. При прохождении через переходный слой быстрая заряженная частица порождает электроны и дырки, которые отсасываются к электродам.

В результате возникает электрический импульс, пропорциональный количеству порожденных частицей носителей тока.

Счетчики часто объединяют в группы и включают так, Чтобы регистрировались только такие события, которые отмечаются одновременно несколькими приборами, либо, напротив, только одним из них. В первом случае говорят, что счетчики включены по схеме совпадений, во втором - по схеме и совпадений. Применяя различные схемы включений, можно из множества явлений выделить то, которое представляет интерес. Например, два счетчика (pric. 75.1), установленные один за другим и включенные по схеме совпадений, зарегистрируют летящую вдоль их совместной оси частицу и не зарегистрируют частиц 2 и 3:

К числу трековых приборов относятся камеры Вильсона, диффузионные камеры, пузырьковые камеры, искровые камеры и эмульсионные камеры.

Камера Вильсона. Этот прибор создан английским физиком Ч, Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Прибор работает не непрерывно, а циклами. Сравнительно короткое время чувствительности камеры чередуется с мертвым временем (в 100-1000 раз большим), в течение которого камера готовится к следующему рабочему циклу. Пересыщение достигается за счет внезапного охлаждения, вызываемого резким (адиабатическим) расширением рабочей смеси, состоящей из неконденсирующегося газа (гелия, азота, аргона) и паров воды, этилового спирта и т. п. В этот же момент производится стереоскопическое (т. е. с нескольких точек) фотографирование рабочего объема камеры. Стереофотографии позволяют воссоздать пространственную картину зафиксированного явления. Так как отношение времени чувствительности к мертвому времени очень мало, приходится иногда делать десятки тысяч снимков, прежде чем будет зафиксировано какое-либо событие, обладающее небольшой вероятностью. Чтобы увеличить вероятность наблюдения редких явлений, используются управляемые камеры Вильсона, у которых работой расширительного механизма управляют счетчики частиц, включенные в электронную схему, выделяющую нужное событие.

Если поместить камеру Вильсона между полюсами электромагнита, ее возможности сильно расширяются.

По искривлению траектории, вызываемому действием магнитного поля, удается определить знак заряда частицы и ее импульс. В качестве примера фотографии, полученной с помощью камеры Вильсона, помещенной в магнитное поле, может служить рис. 77.3 (стр. 277), на котором видны треки электрона и позитрона.

Диффузионная камера. Как и в камере Вильсона, рабочим веществом в диффузионной камере является пересыщенный пар. Однако состояние пересыщения создается не адиабатическим расширением, а в результате диффузии паров спирта от находящейся при температуре ~ 10° С крышки камеры к охлаждаем мому твердой углекислотой (температура -70° С) дну. Недалеко от дна возникает слой пересыщенного пара, имеющий толщину в несколько сантиметров. В этом слое и образуются треки, В отличие от камеры Вильсона, диффузионная камера работает непрерывно.

Пузырьковая камера. В изобретенной Д. А. Глезером в 1952 г. пузырьковой камере пересыщенные пары заменены прозрачной перегретой жидкостью (т. е. жидкостью, находящейся под внешним давлением, меньшим давления ее насыщенных паров; йм. § 124 1-го тома). Пролетевшая через камеру ионизирующая частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказывается обозначенным цепочкой пузырьков пара - образуется трек. Пузырьковая камера, как и камера Вильсона, работает циклами. Запускается камера резким снижением (сбросом) давления, вследствие чего рабочая жидкость переходит в метастабильное перегретое состояние. В качестве рабочей жидкости, которая одновременно служит мишенью для пролетающих через нее частиц, применяются водород, ксенон, пропан и некоторые другие вещества. Рабочий объем камер достигает 30 м3.

Искровая камера. В 1957 г. Краншау и де-Биром был сконструирован прибор для регистрации траекторий заряженных частиц, названный искровой камерой. Прибор состоит из системы плоских параллельных друг другу металлических электродов (рис. 75.2). Электроды соединяются через один. Одна группа электродов заземляется, а на другую периодически подается кратковременный (длительностью высоковольтный импульс .

Если в момент подачи импульса через камеру пролетит ионизирующая частица, ее путь будет отмечен цепочкой искр, проскакивающих между электродами. Прибор запускается автоматически с помощью включенных по схеме совпадений дополнительных счетчиков, регистрирующих прохождение через рабочий объем камеры исследуемых частиц.

Более совершенной разновидностью искровой камеры является стримерная камера. В этой камере высокое напряжение снимается раньше, чем успевает развиться полностью искра.

Поэтому возникают лишь зародышевые искры, которые образуют отчетливый след.

Эмульсионная камера. Советские физики Л. В. Мысовский и А. П. Жданов впервые применили для регистрации микрочастиц фотопластинки. Заряженные частицы оказывают на фотографическую эмульсию такое же действие, как и фотоны. Поэтому после проявления пластинки в эмульсии образуется видимый след (трек) пролетевшей частицы. Недостатком метода фотопластинок была малая толщина эмульсионного слоя, вследствие чего получались полностью лишь треки частиц, летящих параллельно плоскости слоя. В эмульсионных камерах облучению подвергаются толстые пачки (весом до нескольких десятков килограммов и толщиной в несколько сотен миллиметров), составленные из отдельных слоев фотоэмульсии (без подложки). После облучения пачка разбирается на слои, каждый из которых проявляется и просматривается под микроскопом. Для того чтобы можно было проследить путь частицы при переходе из одного слоя в другой, перед разборкой пачки на все слои наносится с помощью рентгеновских лучей одинаковая координатная сетка. Получающиеся таким способом треки частиц показаны на рис. 75.3, на котором зафиксировано последовательное превращение -мезона в мюон и затем в позитрон.

  • приборы, позволяющие регистрировать прохождение частицы через определенный участок пространства и в некоторых случаях определять ее характеристики, например, энергию (сцинтилляционный счетчик, черенковский счетчик, ионизационная камера, газоразрядный счетчик, полупроводниковый счетчик );
  • приборы, позволяющие наблюдать, например, фотографировать следы (треки) частиц в веществе (камера Вильсона, диффузтонная камера, пузырьковая камера, ядерные фотоэмульсии ).
Сцинтилляционный счетчик

Детектор ядерных частиц, основными элементами которого являются сцинтиллятор (кристаллофосфор, излучающий вспышки света при попадании в него частиц) и фотоэлектронный умножитель (ФЭУ), позволяющий преобразовать слабые световые вспышки в электрические импульсы, которые регистрируются электронной аппаратурой. Обычно в качестве сцинтилляторов используются кристаллы некоторых неорганических (ZnS - для α-частиц; NaI-Tl, CsI-Tl - для β-частиц и γ-квантов) или органических (антрацен, пластмассы для γ-квантов) веществ. Очень подробно и детально о конструкции и принципе работы изложено .

Самый большой из когда либо созданных сцинтилляционных детекторов установка . На ней зарегистрирован дефицит антинейтрино от реакторов, расположенных от него на среднем расстоянии в 180 км . Этот результат в сочетании с измерениями потоков солнечных нейтрино может свидетельствовать в пользу существования нейтринных осцилляций. Подробности эксперимента можно посмотреть в статье .

Установка KamLAND (Kam ioka L iquid Scintillator A nti-N eutrino D etector) создана на месте разрушенной в результате аварии установки Kamiokande. В нем используется 1000 т жидкого сцинтиллятора который просматривается 1879 фотоумножителями диаметром 50 см . Первая задача, которая решалась на этой установке - измерение потоков антинейтрино от японских и южнокорейских ректоров.

Как видно из рисунка 4.17, в предыдущих экспериментах с реакторными нейтрино их дефицита не было обнаружено. Однако эксперименты с солнечными нейтрино свидетельствовали, что расстояния ~1 км слишком малы для его обнаружения. Размеры KamLAND и его расположение в 100-200 км от реакторов делает его весьма чувствительным к эффекту, что и привело к его обнаружению.

С помощью метода задержанных совпадений детектировались позитроны и γ-кванты с энергией 2.2 МэВ от захвата нейтронов протонами.

Ионизационные счетчики

Детекторы частиц (заполненные газом электрические конденсаторы), основанные на способности заряженных частиц вызывать ионизацию газа, с последующим разделением продуктов ионизации в электрическом поле. Если счетчик регистрирует только ионы, образовавшиеся непосредственно под действием частиц, то такой счетчик называются импульсной ионизационной камерой. Подробная и детальная информация лежит .

Счетчики, в которых основную роль играет вторичная ионизация обусловленная столкновениями первичных ионов с атомами и молекулами газа, в результате чего возникает разряд в газе, называются газоразрядными счетчиками. Пример газоразрядного счетчика - счетчик Гейгера-Мюллера . Газоразрядный счетчик обычно выполняется в виде наполненного газом металлического цилиндра (катод ) с тонкой проволокой (анод ), натянутой по его оси.

Полупроводниковые счетчики

Полупроводниковые диоды, прохождение через которые регистрируемых частиц, приводит к появлению электрического тока через диод. Малая толщина рабочей области полупроводниковых счетчиков не позволяет применять их для измерения высокоэнергетических частиц. Более подробная информация лежит .

Камера Вильсона

Стеклянный цилиндр с плотно прилегающим поршнем, заполненный нейтральным газом (аргон или гелий), насыщенным парами воды и спирта. При резком (адиабатическом) расширении газ становится пересыщенным и на траекториях частиц, пролетевших через камеру, образуются треки из тумана, которые фотографируются. По характеру и геометрии треков можно судить о типе прошедших через камеру частиц. О конструкции и принципе работы очень подробно и детально изложено .

Пузырьковая камера Ядерные фотоэмульсии

Толстослойные фотографические эмульсии, прохождение заряженных частиц через которые вызывает ионизацию, приводящую к образованию скрытого изображения в эмульсии. После проявления следы заряженных частиц обнаруживаются в виде цепочки зерен металлического серебра. Так как эмульсия - среда более плотная, чем газ или жидкость, используемые в вильсоновской и пузырьковой камерах, то при прочих равных условиях длина трека в эмульсиях более короткая. Поэтому фотоэмульсии применяются для изучении реакций, вызываемых частицами в ускорителях сверхвысоких энергий и космических лучах. Для исследований высокоэнергетичных частиц используются также так называемые стопы - большое число маркированных фотоэмульсионных пластинок, помещаемых на пути частиц и после проявления промеряемых под микроскопом. Более подробная информация лежит . С некоторыми возможностями измерения треков, можно ознакомиться .

МЕТОДЫ НАБЛЮДЕНИЯ И РЕГИСТРАЦИИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ


Счетчик Гейгера

Служит для подсчета количества радиоактивных частиц ( в основном электронов ).

Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод).
При пролете частицы возникает ударная ионизация газа и возникает импульс электрического тока.

Достоинства:
- компактность
- эффективность
- быстродействие
- высокая точность (10ООО частиц/с).

Где используется:
- регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д.
- на объектах хранения радиоактивных материалов или с работающими ядерными реакторами
- при поиске залежей радиоактивной руды (U, Th)


Камера Вильсона

Служит для наблюдения и фотографирования следов от пролета частиц (треков).

Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии:
при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар .
По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след.
При помещении камеры в магнитное поле по треку можно определить энергию, скорость, массу и заряд частицы.

По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы.
Например, альфа-частица дает сплошной толстый трек,
протон - тонкий трек,
электрон - пунктирный трек.


Пузырьковая камера

Вариант камеры Вильсона

При резком понижении поршня жидкость, находящаяся под высоким давление, переходит в перегретое состояние . При быстром движении частицы по следу образуются пузырьки пара, т.е. жидкость закипает, виден трек .

Преимущества перед камерой Вильсона:
- большая плотность среды, следовательно короткие треки
- частицы застревают в камере и можно проводить дальнейшее наблюдение частиц
- большее быстродействие.

Метод толстослойных фотоэмульсий

Служит для регистрации частиц
- позволяет регистрировать редкие явления из-за большого время экспозиции.

Фотоэмульсия содержит большое количество микрокристаллов бромида серебра.
Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы - трек.
По длине и толщине трека можно определить энергию и массу частиц.

Вспомни тему "Атомная физика" за 9 класс:

Радиоактивность.
Радиоактивные превращения.
Состав атомного ядра. Ядерные силы.
Энергия связи. Дефект масс.
Деление ядер урана.
Ядерная цепная реакция.
Ядерный реактор.
Термоядерная реакция.

Другие страницы по теме "Атомная физика" за 10-11 класс:

ЧТО МЫ ЗНАЕМ О ФИЗИКАХ?

Нильс Бор в 1961 году говорил: "На каждом этапе А.Эйнштейн бросал вызов науке , и не будь этих вызовов, развитие квантовой физики затянулось бы надолго".
___

В 1943 году Нильс Бор , спасаясь от оккупантов, вынужден был покинуть Копенгаген. Не рискуя взять с собой одну очень ценную для него вещь, он растворил ее в "царской водке" и колбу оставил в лаборатории. После освобождения Дании, вернувшись, он выделил из раствора то, что растворил, и по его заказу создали новую Нобелевскую медаль .
__

В 1933 году в лаборатории, которую возглавлял Эрнест Резерфорд , был сооружен мощный по тем временам ускоритель . Ученый очень гордился этой установкой и как-то раз, показывая ее одному из посетителей, заметил: «Эта штука обошлась нам очень дорого. На эти деньги можно целый год содержать одного аспиранта! Но разве какой-нибудь аспирант может сделать за год столько открытий