Между какими соединениями образуется пептидная связь. Особенности пептидной связи

Пептидная связь по своей химической природе является ковалентной и придает высокую прочность первичной структуре белковой молекулы. Являясь повторяющимся элементом полипептидной цепи и имея специфические особенности структуры, пептидная связь влияет не только на форму первичной структуры, но и на высшие уровни организации полипептидной цепи.

Большой вклад в изучение строения белковой молекулы внесли Л.Полинг и Р.Кори. Обратив внимание на то, что в молекуле белка больше всего пептидных связей, они первыми провели кропотливые рентгеноструктурные исследования этой связи. Изучили длины связей, углы под которыми располагаются атомы, направление расположения атомов относительно связи. На основании исследований были установлены следующие основные характеристики пептидной связи.

1. Четыре атома пептидной связи (С,О,N,Н) и два присоединенных
a-углеродных атома лежат в одной плоскости. Группы R и Н a-углеродных атомов лежат вне этой плоскости.

2. Атомы О и Н пептидной связи и два a-углеродных атома, а также R-группы имеют транс-ориентацию относительно пептидной связи.

3. Длина связи С–N, равная 1,32 Å, имеет промежуточное значение между длиной двойной ковалентной связи (1,21 Å) и одинарной ковалентной связи (1,47 Å). Отсюда следует, что связь С–N имеет частично ненасыщенный характер. Это создает предпосылки для осуществления по месту двойной связи таутомерных перегруппировок с образованием енольной формы,т.е. пептидная связь может существовать в кето-енольной форме.

Вращение вокруг связи –С=N– затруднено и все атомы, входящие в пептидную группу, имеют планарную транс-конфигурацию. Цис-конфигурация является энергетически менее выгодной и встречается лишь в некоторых циклических пептидах. Каждый планарный пептидный фрагмент содержит две связи с a-углеродными атомами, способными к вращению.

Между первичной структурой белка и его функцией у данного организма существует самая тесная связь. Для того, чтобы белок выполнял свойственную ему функцию, необходима совершенно определенная последовательность аминокислот в полипептидной цепи этого белка. Эта определенная последовательность аминокислот, качественный и количественный состав закреплен генетически (ДНК→РНК→белок). Каждый белок характеризуется определенной последовательностью аминокислот, замена хотя бы одной аминокислоты в белке приводит не только к структурным перестройкам, но и к изменениям физико-химических свойств и биологических функций. Имеющаяся первичная структура предопределяет последующие (вторичную, третичную, четвертичную) структуры. Например, в эритроцитах здоровых людей содержится белок– гемоглобин с определенной последовательностью аминокислот. Небольшая часть людей имеет врожденную аномалию структуры гемоглобина: их эритроциты содержат гемоглобин, у которого в одном положении вместо глутаминовой кислоты (заряженной, полярной) содержится аминокислота валин (гидрофобная, неполярная). Такой гемоглобин существенно отличается по физико-химическим и биологическим свойствам от нормального. Появление гидрофобной аминокислоты, приводит к возникновению «липкого» гидрофобного контакта (эритроциты плохо передвигаются в кровеносных сосудах), к изменению формы эритроцита (из двояковогнутого в серповидный), а также к ухудшению переноса кислорода и т.д. Дети, родившееся с этой аномалией, в раннем детстве погибают от серповидноклеточной анемии.



Исчерпывающие доказательства в пользу утверждения, что биологическая активность определяется аминокислотной последовательностью, были получены, после искусственного синтеза фермента рибонуклеазы (Меррифилд). Синтезированный полипептид с той же аминокислотной последовательностью, что и естественный фермент, обладал такой же ферментативной активностью.

Исследования последних десятилетий показали, что первичная структура закреплена генетически, т.е. последовательность аминокислот в полипептидной цепи определяется генетическим кодом ДНК, и, в свою очередь определяет вторичную, третичную и четвертичную структуры белковой молекулы и ее общую конформацию. Первым белком, у которого была установлена первичная структура, был белковый гормон инсулин (содержит 51 аминокислоту). Это было сделано в 1953 г. Фредериком Сэнгером. К настоящему времени расшифрована первичная структура более десяти тысяч белков, но это очень небольшое количество, если учесть, что в природе белков около 10 12 . В результате свободного вращения полипептидные цепи способны скручиваться (складываться) в различные структуры.

Вторичная структура. Под вторичной структурой белковой молекулы понимают способ укладки полипептидной цепи в пространстве. Вторичная структура белковой молекулы образуется в результате того или иного вида свободного вращения вокруг связей, соединяющих a-углеродные атомы в полипептидной цепи.В результате этого свободного вращения полипептидные цепи способны скручиваться(складываться) в пространстве в различные структуры.

В природных полипептидных цепях обнаружены три основных типа структуры:

- a-спираль;

- β-структура(складчатый лист);

- статистический клубок.

Наиболее вероятным типом строения глобулярных белков принято считать α-спираль Закручивание происходит по часовой стрелке (правый ход спирали), что обусловлено L-аминокислотным составом природных белков. Движущей силой в возникновении α-спирали является способность аминокислот к образованию водородных связей. R-группы аминокислот направлены наружу от центральной оси a-спирали . диполи >С=О и >N–Н соседних пептидных связей ориентированы оптимальным образом для дипольного взаимодействия, образуя вследствие этого обширную систему внутримолекулярных кооперативных водородных связей, стабилизирующих a-спираль.

Шаг спирали (один полный виток) 5,4Å включает 3,6 аминокислотных остатка.

Рисунок 2 – Структура и параметры a-спирали белка

Для каждого белка характерна определенная степень спирализации его полипептидной цепи

Спиральную структуру могут нарушить два фактора:

1) в наличие в цепи остатка пролина, циклическая структура которого вносит излом в полипептидную цепь – нет группы –NН 2 , поэтому невозможно образования внутрицепочечной водородной связи;

2) если в полипептидной цепи подряд расположено много остатков аминокислот, имеющих положительный заряд (лизин, аргинин) или отрицательный заряд (глутаминовой, аспарагиновой кислот), в этом случае сильное взаимное отталкивание одноименнозаряженных групп (–СОО – или –NН 3 +) значительно превосходит стабилизирующее влияние водородных связей в a-спирали .

Другой тип конфигурации полипептидных цепей, обнаруженный в белках волос, шелка, мышц и в других фибриллярных белках, получил название β-структуры или складчатого листа. Структура типа складчатого листа также стабилизирована водородными связями между теми же диполями –NН...... О=С<. Однако в этом случае возникает совершенно иная структура, при которой остов полипептидной цепи вытянут таким образом, что имеет зигзагообразную структуру. Складчатые участки полипептидной цепи проявляют кооперативные свойства, т.е. стремятся расположиться рядом в белковой молекуле, и формируют параллельные

одинаковонаправленные полипептидные цепи или антипараллельные,

которые укрепляются благодаря водородным связям между этими цепями. Такие структуры называются b-складчатые листы (рисунок 2).

Рисунок 3 – b-структура полипептидных цепей

a-Спираль и складчатые листы – это упорядоченные структуры, в них имеется регулярная укладка аминокислотных остатков в пространстве. Некоторые участки полипептидной цепи не имеют какой-либо правильной периодической пространственной организации, их обозначают как беспорядочный или статистический клубок.

Все эти структуры возникают самопроизвольно и автоматически вследствие того, что данный полипептид имеет определенную аминокислотную последовательность, которая предопределена генетически. a-спирали и b-структуры обуславливают определенную способность белков к выполнению специфических биологических функций. Так, a-спиральная структура (a-кератин) хорошо приспособлена к тому, чтобы образовывать наружные защитные структуры-перья, волосы, рога, копыта. b-структура способствует образованию гибких и нерастяжимых нитей шелка и паутины, а конформация белка коллагена обеспечивает высокую прочность на разрыв, необходимую для сухожилий. Наличие только a-спиралей или b-структур характерно – для нитевидных (фибрилярных белков). В составе глобулярных (шаровидных) белков содержание a-спиралей и b-структур и бесструктурных участков сильно варьируется. Например: инсулин спирализованна 60%, фермент рибонуклеаза – 57%, белок куриного яйца лизоцим – на 40%.

Третичная структура. Под третичнойструктурой понимают способ укладки полипептидной цепи в пространстве в определенном объеме.

Третичная структура белков образуется путем дополнительного складывания пептидной цепи содержащей a-спираль, b-структуры и участки беспорядочного клубка. Третичная структура белка формируется совершенно автоматически, самопроизвольно и полностью предопределяется первичной структурой и имеет непосредственное отношение к форме белковой молекулы, которая может быть различной: от шарообразной до нитевидной. Форма белковой молекулы характеризуется таким показателем, как степень асимметрии (отношение длинной оси к короткой). У фибриллярных или нитевидных белков степень асимметрии больше 80. При степени асимметрии меньше 80 белки относятся к глобулярным . Большинство из них имеет степень асимметрии 3-5, т.е. третичная структура характеризуется достаточно плотной упаковкой полипептидной цепи, приближающейся по форме к шару.

При формировании глобулярных белков неполярные гидрофобные радикалы аминокислот группируются внутри белковой молекулы, в то время как полярные радикалы ориентируются в сторону воды. В какой-то момент возникает термодинамически наиболее выгодная стабильная конформация молекулы – глобула. В такой форме белковая молекула характеризуется минимальной свободной энергией. На конформацию возникшей глобулы оказывают влияние такие факторы как рН раствора, ионная сила раствора, а также взаимодействие белковых молекул с другими веществами.

Основной движущей силой в возникновении трехмерной структуры, является взаимодействие радикалов аминокислот с молекулами воды.

Фибриллярные белки. При формировании третичной структуры не образуют глобул – их полипептидные цепи не сворачиваются, а остаются вытянутыми в виде линейных цепей, группируясь в волокна- фибриллы.

Рисунок– Строение коллагеновой фибриллы (фрагмент).

В последнее время появились доказательства, что процесс формирования третичной структуры не является автоматическим, а регулируется и контролируется специальными молекулярными механизмами. В этом процессе задействованы специфические белки – шапероны. Основными функциями их являются способность предотвращать образование из полипептидной цепи неспецифических (хаотичных) беспорядочных клубков, и обеспечение доставки (транспорта) их к субклеточным мишеням, создавая условия для завершения свертывания белковой молекулы.

Стабилизация третичной структуры обеспечивается благодаря нековалентным взаимодействиям между атомными группировками боковых радикалов.

Рисунок 4- Типы связей, стабилизирующих третичную структуру белка

а) электростатические силы притяжения между радикалами, несущими противоположно заряженные ионные группы (ион-ионные взаимодействия), например отрицательно заряженная карбоксильная группа (– СОО –) аспарагиновой кислоты и (NН 3 +) положительно заряженной e-аминогруппой остатка лизина.

б) водородные связи между функциональными группами боковых радикалов. Например, между ОН- группой тирозина и карбоксильным кислородом аспарагиновой кислоты

в) гидрофобные взаимодействия обусловлены силами Ван-дер-Ваальса между неполярными радикалами аминокислот. (Например, группами
–СН 3 – аланина, валина и т.д..

г) диполь-дипольные взаимодействия

д) дисульфидные связи (–S–S–) между остатками цистеина. Эта связь очень прочная и присутствует не во всех белках. Важную роль эта связь играет в белковых веществах зерна и муки, т.к. оказывает влияние на качество клейковины, структурно-механические свойства теста и соответственно на качество готовой продукции – хлеба и т.д.

Белковая глобула не является абсолютно жесткой структурой: в известных приделах возможны обратимые перемещения частей пептидной цепи относительно друг друга с разрывом небольшого количества слабых связей и образования новых. Молекула как бы дышит, пульсирует в разных своих частях. Эти пульсации не нарушают основного плана конформации молекулы, подобно тому, как тепловые колебания атомов в кристалле не изменяют структуру кристалла, если температура не настолько велика, что наступает плавление.

Только после приобретения белковой молекулой естественной, нативной третичной структуры он проявляет свою специфическую функциональную активность: каталитическую, гормональную, антигенную и т.д. Именно при образовании третичной структуры происходит формирование активных центров ферментов, центров ответственных за встраивание белка в мультиферментный комплекс, центров, ответственных за самосборку надмолекуляных структур. Поэтому любые воздействия (термические, физические, механические, химические), приводящие к разрушению этой нативной конформации белка (разрыв связей), сопровождается частичной или полной потерей белком его биологических свойств.

Изучение полных химических структур некоторых белков показало, что в их третичной структуре выявляются зоны, где сконцентрированы гидрофобные радикалы аминокислот, и полипептидная цепь фактически обматывается вокруг гидрофобного ядра. Более того, в ряде случаев в белковой молекуле обособляются два и даже три гидрофобных ядра, в результате возникает 2-х или 3-х ядерная структура. Такой тип строения молекулы характерен для многих белков, обладающих каталитической функцией (рибонуклеаза, лизоцим и т.д.). Обособленная часть или область молекулы белка обладающая в определенной степени структурной и функциональной автономией называется доменом. У ряда ферментов, например, обособленны субстрат-связывающие и кофермент связывающие домены.

В биологическом отношении фибриллярные белки играют очень важную роль, связанную с анатомией и физиологией животных. У позвоночных на долю этих белков приходится 1/3 от их общего содержания. Примером фибрилярных белков может служить белок шелка – фиброин, который состоит из нескольких антипараллельных цепей со структурой складчатого листа. Белок a-кератин содержит от 3-7 цепей. Коллаген имеет сложную структуру, в которой 3 одинаковые левовращающие цепи скручены вместе с образованием правовращающей тройной спирали. Эта тройная спираль стабилизирована многочисленными межмолекулярными водородными связями. Наличие таких аминокислот, как гидроксипролина и гидроксилизина также вносит вклад в образование водородных связей, стабилизирующих структуру тройной спирали. Все фибриллярные белки плохо растворимы или совсем нерастворимы в воде, так как в их составе содержится много аминокислот, содержащих гидрофобные, нерастворимые в воде R-группы изолейцин, фенилаланин, валин, аланин, метионин. После специальной обработки нерастворимый и неперевариваемый коллаген превращается в желатин-растворимую смесь полипептидов, который затем используют в пищевой промышленности.

Глобулярные белки . Выполняют разнообразные биологические функции. Они выполняют транспортную функцию, т.е. переносят питательные вещества, неорганические ионы, липиды и т.д. К этому же классу белков принадлежат гормоны, а также компоненты мембран и рибосом. Все ферменты тоже глобулярные белки.

Четвертичная структура. Белки содержащие две или большее число полипептидных цепей называют олигомерными белками , для них характерно наличие четвертичной структуры.

Рисунок – Схемы третичной (а) и четвертичной (б) структур белка

В олигомерных белках каждая из полипептидных цепей характеризуется своей первичной, вторичной и третичной структурой, и называется субъединицей или протомером Полипептидные цепи (протомеры) в таких белках могут быть либо одинаковыми либо разными. Олигомерные белки называют гомогенными, если их протомеры одинаковы и гетерогенными, если их протомеры различны. Например-белок гемоглобин состоит из 4-х цепей: двух -a и двух -b протомеров. Фермент a-амилаза состоит из 2-х одинаковых полипептидных цепей. Под четвертичной структурой понимают расположение полипептидных цепей (протомеров) относительно друг друга, т.е. способ их совместной укладки и упаковки. При этом протомеры взаимодействуют друг с другом не любой частью своей поверхности, а определенным участком (контактной поверхностью). Контактные поверхности имеют такое расположение атомных группировок, между которыми возникают водородные, ионные, гидрофобные связи. Кроме того, геометрия протомеров также способствует их соединению. Протомеры подходят друг к другу, как ключ к замку. Такие поверхности называются комплиментарными. Каждый протомер взаимодействует с другим во множестве точек, это приводит к тому, что соединение с другими полипептидными цепями или белками невозможно. Такие комплиментарные взаимодействия молекул лежат в основе всех биохимических процессов в организме.

Белки, их содержание в живом веществе и молекулярная масса

Белки, их строение и свойства

Из органических веществ живого вещества на первом месте по количеству и значению стоят белки, или протеины (от греч. протос – основной, первичный). В составе ныне живущих на Земле организмов содержится около 1 трлн т белков. От массы, например животной, клетки белки составляют 10–18%, т.е. половину сухого веса клетки.

Белковых молекул в каждой клетке содержится, по меньшей мере, несколько тысяч.

Белки – это высокомолекулярные полимеры (макромолекулы) с молекулярной массой от 6 тыс. до 1 млн и выше. По сравнению с молекулами спирта или органических кислот белки выглядят просто великанами. Так, молекулярная масса инсулина – 5700, яичного альбумина – 36 000, миозина – 500 000.

В состав белков входят атомы С, Н, О, N, S, Р, иногда Fe, Сu, Zn. Для выяснения химического строения белков знаний их элементарного состава недостаточно. Например, эмпирическая формула гемоглобина – C 3032 Н 4816 О 872 S 8 Fe 4 – ничего не говорит о характере расположения атомов в молекуле. Необходимо познакомиться с особенностями строения белковых молекул подробней.


2. Белки – непериодические полимеры. Строение и свойства аминокислот

По своей химической природе белки являются непериодическими полимерами. Мономерами белковых молекул являются аминокислоты. Вообще аминокислотой можно назвать любое соединение, содержащее одновременно аминогруппу (–NH 2) и группировку органических кислот – карбоксильную группу (–СООН). Число возможных аминокислот очень велико, но белки образуют только 20 так называемых золотых, или стандартных, аминокислот (8 из них являются незаменимыми, т.к. не синтезируются в организмах животных и человека). Именно сочетание этих 20 аминокислот и дает все многообразие белков. После того как молекула белка собрана, некоторые аминокислотные остатки в ее составе могут подвергаться химическим изменениям, так что в «зрелых» белках можно обнаружить до 30 различных аминокислотных остатков (но строятся все белки исходно все равно только из 20!).

В клетке находятся свободные аминокислоты, составляющие аминокислотный фонд, за счет которого происходит синтез новых белков. Этот фонд пополняется аминокислотами, постоянно поступающими в клетку вследствие расщепления пищеварительными ферментами белков пищи или распада собственных запасных белков. В зависимости от аминокислотного состава белки бывают полноценными, содержащими весь набор аминокислот, и неполноценными, в составе которых отсутствуют какие-то аминокислоты.

Общая формула аминокислот изображена на рисунке. В левой части формулы расположена аминогруппа –NH 2 а в верхней – карбоксильная группа –СООН. Группа –NH 2 имеет основные свойства, группа –СООН – кислотные свойства. Таким образом, аминокислоты – амфотерные соединения, совмещающие свойства кислоты и основания.



Аминокислоты отличаются своими радикалами (R), в роли которых могут быть самые разные соединения. Это обусловливает большое разнообразие аминокислот.

Амфотерными свойствами аминокислот обусловлена их способность взаимодействовать друг с другом. Две аминокислоты соединяются за счет реакции конденсации в одну молекулу путем установления связи между углеродом кислотной и азотом основной групп с выделением молекулы воды.

Связь, изображенная слева, называется пептидной (от греч. пепсис – пищеварение). Этот термин напоминает нам о том, что эта связь гидролизуется пищеварительным ферментом желудочного сока пепсином . По природе пептидная связь является ковалентной.

Соединение двух аминокислот называется дипептидом, трех – трипептидом и т.д. Примером трипептида может служить белок глютатион , состоящий из остатков глицина, цистеина и глютаминовой кислоты. Он содержится во всех живых клетках (особенно много его в зародыше пшеничного зерна и дрожжах) и активно участвует в обмене веществ.

Глютатион

В основном же белки, входящие в состав живых организмов, включают в себя сотни и тысячи аминокислот (чаще всего от 100 до 300), поэтому их называют полипептидами . Аминокислоты в составе белковой полипептидной цепи называют аминокислотными остатками.

Пептиды различаются числом (n ), природой, порядком или последовательностью своих аминокислотных остатков. Их можно сравнить со словами разной длины, в написании которых использован алфавит, состоящий из 20 букв. Из 20 аминокислот можно теоретически получить 1020 возможных вариантов цепей, длиной каждая не менее чем 10 аминокислотных остатков. Белки же, выделенные из живых организмов, образованы сотнями, а иногда и тысячами аминокислотных остатков. В этом кроется источник бесконечного разнообразия белковых молекул, что является важной предпосылкой эволюционного процесса.

(1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схеме рибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки . Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

Свойства пептидной связи

Как и в случае любых амидов, в пептидной связи за счет резонанса канонических структур связь C-N между углеродом карбонильной группы и атомом азота частично имеет характер двойной:

Это проявляется, в частности, в уменьшении её длины до 1,33 ангстрема :


Это обусловливает следующие свойства:

  • 4 атома связи (C, N, O и H) и 2 α-углерода находятся в одной плоскости. R-группы аминокислот и водороды при α-углеродах находятся вне этой плоскости.
  • H и O в пептидной связи, а также α-углероды двух аминокислот трансориентированы (транс-изомер более устойчив). В случае L-аминокислот, что имеет место во всех природных белках и пептидах, R-группы также трансориентированы.
  • Вращение вокруг связи C-N затруднено, возможно вращение вокруг С-С связи.

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Пептидная связь" в других словарях:

    - (CO NH) химическая связь, соединяющая аминогруппу одной аминокислоты с карбоксильной группой другой в молекулах пептидов и белков … Большой Энциклопедический словарь

    пептидная связь - – амидная связь (NH CO), образующаяся между амино и карбоксильной группами аминокислот в результате реакции дегидратации … Краткий словарь биохимических терминов

    пептидная связь - Ковалентная связь между альфа аминогруппой одной аминокислоты и альфа карбоксильной группой другой аминокислоты Тематики биотехнологии EN peptide bond … Справочник технического переводчика

    Пептидная связь - * пептыдная сувязь * peptide bond ковалентная связь между двумя аминокислотами, возникающая в результате соединения α аминогруппы одной молекулы с α карбоксильной группой др. молекулы, с одновременным удалением воды … Генетика. Энциклопедический словарь

    ПЕПТИДНАЯ СВЯЗЬ - хим. Связь СО NH , характерная для аминокислот в молекулах белков и пептидов. П. с. встречается и в некоторых др. органических соединениях. При ее гидролизе образуются свободная карбоксильная группа и аминогруппа … Большая политехническая энциклопедия

    Вид амидной связи; возникает в результате взаимодействия а аминогруппы (NH2) одной аминокислоты с? карбоксильной группой (СООН) др. аминокислоты. Группа С(О) NH в белках и пептидах находится в состоянии кето енольной таутомерии (существование… … Биологический энциклопедический словарь

    - (СО NH), химическая связь, соединяющая аминогруппу одной аминокислоты с карбоксильной группой другой в молекулах пептидов и белков. * * * ПЕПТИДНАЯ СВЯЗЬ ПЕПТИДНАЯ СВЯЗЬ (CO NH), химическая связь, соединяющая аминогруппу одной аминокислоты… … Энциклопедический словарь

    Peptide bond пептидная связь. Pазновидность амидной связи, образуется между α карбоксильной и α аминогруппой двух аминокислот. (

Полипептиды это белки, которые обладают повышенной конденсационной степенью. Они имеют широкое распространение среди организмов как растительного, так и животного происхождения. То есть здесь речь идет о компонентах, которые являются обязательными. Они отличаются чрезвычайным разнообразием, причем нет грани четкого характера между такими веществами и обычными белками. Если говорить о разнообразии таких веществ, то надо отметить что когда они формируются, в этом процессе участвуют не менее 20 аминокислот протеногенного типа, а если говорить о количестве изомеров, то их можно быть до бесконечности.

Именно поэтому молекулы белкового типа имеют столько возможностей, которые практически безграничны, когда речь идет об их полифункциональности. Так что, понятно почему белки называют основной всего живого, что есть на Земле. Белки называют ещё и одними из самых сложных веществ, которые когда либо были сформированы природой, также они очень уникальны. Так же, как и протеин, белки способствуют активному развитию живых организмов.

Если говорить максимально конкретно, то речь идет о веществах, которые представляют собой биополимеры, в основе которых лежат аминокислоты, содержащие не менее сотни остатков аминокислотного типа. Причем, здесь также есть деление – есть такие вещества, которые относятся к низкомолекулярной группе, они включает в себя всего несколько десятков остатков аминокислот, есть также вещества, которые относятся к высокомолекулярным группам, в них таких остатков существенно больше. Полипептид же это такое вещество, которое отличается действительно большим разнообразием в своей структуре и организации.

Группы полипептидов

Все эти вещества в условном порядке делятся на две группы, при таком делении принимаются во внимание особенности их структуры, которые оказывают непосредственное влияние на их функциональность:

  • К первой группе можно отнести вещества, которые отличаются типичной белковой структурой, то есть сюда входит цепочка линейного типа и непосредственно аминокислоты. Они встречаются во всех живых организмах, причем, самый большой интерес здесь имеют вещества с повышенной активностью гормонального типа.
  • Что касается второй группы, то здесь находятся те соединения, структура которых имеет не самые типичные для белков особенности.

Что представляет собой полипептидная цепь

Полипептидная цепь представляет белковую структуру в состав которой входят аминокислоты, все это имеет прочную связь соединениями пептидного типа. Если говорить о первичной структуре, то речь идет о простейшем уровне структуры молекулы белкового типа. Такая организационная форма отличается повышенной стабильностью.

Когда в клетках начинают образовываться пептидные связи, то первым делом активацию начинает группа карбоксильного типа одной аминокислоты, а уже потом начинает активное соединение с другой подобной группой. То есть полипептидные цепи характеризуются постоянно чередующимися фрагментами таких связей. Здесь есть целый ряд определенных факторов, оказывающих существенное влияние на форму структуры первичного типа, однако этим их влияние не ограничивается. Существует активное влияние на те организации такой цепи, которые имеют высший уровень.

Если говорить об особенностях такой организацинной формы, то они заключаются в следующем:

  • происходит регулярное чередование структур, относящимся к жесткому типу;
  • есть участки, которые обладают относительной подвижностью, они имеют возможность вращаться вокруг связей. Именно особенности такого рода оказывают влияние на то, каким образом полипептидная цепь укладывается в пространстве. Причем с пептидными цепями могут осуществляться разного рода организационные моменты под воздействием множества факторов. Может быть отсоединение одной из структур, когда пептиды формируются в отдельную группу и отделяются от одной цепи.

Белковая структура вторичного типа

Здесь речь идет о варианте цепной укладки таким образом, чтобы была организована упорядоченная структура, такое становится возможным, благодаря водородным связям между группами пептидов одной цепи с такими же группами другой цепи. Если брать во внимание конфигурацию такой структуры, то она может быть:

  1. Спирального типа, такое название произошло, благодаря своеобразной форме.
  2. Слоисто-складчатого типа.

Если говорить о спиральной группе, то это такая белковая структура, которая сформирована в форме спирали, которая образуется, не выходя за пределы одной цепи полипептидного типа. Если говорить о внешнем виде, то она во многом схожа с обычной электрической спиралью, которая есть в плитке, работающей на электричестве.

Что касается слоисто-складчатой структуры, то здесь цепь отличается изогнутой конфигурацией, её формирование осуществляется на основе связей водородного типа, причем, здесь все ограничивается пределами одного участка конкретной цепи.

Аминокислоты в полипептидной цепи связаны амидной связью, которая образуется между α-карбоксильной группой одной и α-аминогруппой следующей аминокислоты (рис. 1). Образующаяся между аминокислотами ковалентная связь получила название пептидной связи. Атомы кислорода и водорода пептидной группы при этом занимают трансположение.

Рис. 1. Схема образования пептидной связи. В каждом белке или пептиде можно выделить: N-конец белка или пептида, имеющий свободную а-аминогруппу (-NH 2);

С-конец, имеющий свободную карбоксильную группу (-СООН);

Пептидный остов белков, состоящий из повторяющихся фрагментов: -NH-СН-СО- ; Радикалы аминокислот (боковые цепи) (R 1 и R 2) - вариабельные группы.

Сокращенная запись полипептидной цепи, так же как и синтез белка в клетках, обязательно начинается с N-конца и заканчивается С-концом:

Названия аминокислот, включенных в пептид и образующих пептидную связь, имеют окончания -ил. Например, трипептид, приведенный выше, называется треонил-гистидил-пролин.

Единственной вариабельной частью, отличающей один белок от всех остальных, является сочетание радикалов (боковых цепей) аминокислот, входящих в него. Таким образом, индивидуальные свойства и функции белка обусловлены структурой и порядком чередования аминокислот в полипептидной цепи.

Полипептидные цепи разных белков организма могут включать от нескольких аминокислот до сотен и тысяч аминокислотных остатков. Их молекулярная масса (мол. масса) также колеблется в широких пределах. Так, гормон вазопрессин состоит из 9 аминокислот, мол. масса 1070 кД; инсулин - из 51 аминокислоты (в 2 цепях), мол. масса 5733 кД; лизоцим - из 129 аминокислот (1 цепь), мол. масса 13 930 кД; гемоглобин - из 574 аминокислот (4 цепи), мол. масса 64 500 кД; коллаген (тропоколлаген) - примерно из 1000 аминокислот (3 цепи), мол. масса ~130 000 кД.

Свойства и функция белка зависят от структуры и порядка чередования аминокислот в цепи, изменение аминокислотного состава может их сильно изменить. Так, 2 гормона задней доли гипофиза - окситоцин и вазопрессин - являются нанопептидами и отличаются 2 аминокислотами из 9 (в положении 3 и 8):

Основной биологический эффект окситоцина заключается в стимуляции сокращения гладкой мускулатуры матки при родах, а вазопрессин вызывает реабсорбцию воды в почечных канальцах (антидиуретический гормон) и обладает сосудосуживающим свойством. Таким образом, несмотря на большое структурное сходство, физиологическая активность этих пептидов и ткани-мишени, на которые они действуют, отличаются, т.е. замена всего 2 из 9 аминокислот вызывает существенное изменение функции пептида.


Иногда совсем небольшое изменение структуры крупного белка вызывает подавление его активности. Так, фермент алкогольдегидрогеназа, расщепляющий этанол в печени человека, состоит из 500 аминокислот (в 4 цепях). Активность его у жителей Азиатского региона (Япония, Китай и др.) намного ниже, чем у жителей Европы. Это связано с тем, что в полипептидной цепи фермента происходит замена глутаминовой кислоты на лизин в положении 487.

Взаимодействиями между радикалами аминокислот играют большое значение в стабилизации пространственной структуры белков, можно выделить 4 типа химических связей: гидрофобная, водородная, ионная, дисульфидная.

Гидрофобные связи возникают между неполярными гидрофобными радикалами (рис. 2). Они играют ведущую роль в формировании третичной структуры белковой молекулы.

Рис. 2. Гидрофобные взаимодействия между радикалами

Водородные связи - образуются между полярными (гидрофильными) незаряженными группами радикалов, имеющими подвижный атом водорода, и группами с электроотрицательным атомом (-О или -N-) (рис. 3).

Ионные связи образуются между полярными (гидрофильными) ионогенными радикалами, имеющими противоположно заряженные группы (рис. 4).

Рис. 3. Водородные связи между радикалами аминокислот

Рис. 4. Ионная связь между радикалами лизина и аспарагиновой кислоты (А) и примеры ионных взаимодействий (Б)

Дисульфидная связь - ковалентная, образуется двумя сульфгидрильными (тиольными) группами радикалов цистеина, находящимися в разных местах полипептидной цепи (рис. 5). Встречается в таких белках, как инсулин, инсулиновый рецептор, иммуноглобулины и др.

Дисульфидные связи стабилизируют пространственную структуру одной полипептидной цепи или связывают между собой 2 цепи (например, цепи А и В гормона инсулина) (рис. 6).

Рис. 5. Образование дисульфидной связи.

Рис. 6. Дисульфидные связи в молекуле инсулина. Дисульфидные связи: между остатками цистеина одной цепи А (а), между цепями А и В (б). Цифры - положение аминокислот в полипептидных цепях.