Металлические нанокластеры. Металлические нанокластеры в оптических стеклах Классическая теория зародышеобразования


Цветное витражное стекло средневековых соборов, содержит наноразмерные металлические частицы. Размер наночастиц золота влияет на оптический спектр поглощения кварцевого стекла (окиси кремния ) в видимом диапазоне. См рис пул139.+

Рис Кружками показан спектр поглощения 20 нм частиц золота в стекле. Максимум поглощения 530 нм(зеленый цвет), черточками показан спектр поглощения 80 нм частиц золота в стекле максимум поглощения 560 нм.(желто-зеленый).

При очень высоких частотах электроны проводимости в металлах ведут себя как плазма –электрически нейтральный ионизированный газ. В плазме твердого тела отрицательные заряды –электроны, положительные заряды-ионы решетки. Если кластеры имеют размеры меньше длины волны падающего света, и не взаимодействуют друг с другом, то электромагнитная волна вызывает колебания электронной плазмы приводящее к её поглощению.

Для вычисления зависимости коэффициента поглощения от длины волны используют теорию рассеяния Ми. Коэффициент поглощения маленькой сферической частицы металла. находящейся в непоглощающей среде

Где -концентрация сфер объемом , , - действительная и мнимая части комплексной диэлектрической проницаемости сфер, -показатель преломления непоглощающей среды, -длина волны падающего света.

Другим важным для технологии свойством композитных металлизированных стекол является оптическая нелинейность - зависимость показателей преломления от интенсивности падающего света .

Нелинейные оптические эффекты можно использовать при создании оптических ключей, которые станут основными элементами фотонного компьютера.

Старый метод получения композитных металлизированных стекол состоит в добавлении металлических частиц к расплаву. При этом сложно управлять свойствами стекла, зависящими от степени агрегирования частиц. Новый метод ионная имплантация , когда стекло обрабатывается ионным пучком, состоящим из атомов имплантируемого металла с энергиями от 10 КэВ до 10 МэВ.

Другим методом является ионный обмен см рис140 пул . Показана экспериментальная установка для введения частиц серебра в стекло путем ионного обмена. Одновалентные приповерхностные атомы, например натрий, присутствующий во всех стеклах, замещается другими ионами, например серебром. Для этого стеклянная основа помещается в расплав соли, находящийся между электродами, которым приложено напряжение указанной на рис полярности. Ионы натрия в стекле диффундируют к отрицательному электроду, а серебро диффундирует из серебросодержащего электролита на поверхность стекла.

Рис. Ионообменная установка для допирования стеклянной подложки ионами серебра.

Слева положительный электрод.

Нелинейность характеризуется поляризацией под действием напряженности электрического поля световой волны

Где -диэлектрическая постоянная среды.

В наноматериалах, включающие нанокластеры золота и серебра, плазмонный резонанс возникает при совпадении частот излучения лазера с частотой колебания свободных электронов в нанокластерах металлов. Это ведет к локализации возбуждения в нанокластерах и к резкому усилению локального поля, которое генерируется первичным излучением лазера с напряженностью более . Полимерный нанокомпозит на основе диацетиленового мономера включающий кластеры золота с размерами около 2 нм содержащий 7-16 % металла позволял увеличивать в 200 раз оптическую поляризуемость третьего порядка . На основе такого нелинейного оптического материала можно создавать электронно-оптические преобразователи со значительным усилением.

2.1.1. Классическая теория зародышеобразования

В химии термин «кластер» употребляют для обозначения группы близко расположенных и тесно связанных друг с другом атомов, молекул, ионов, а иногда и ультрадисперсных частиц. Впервые это понятие было введено в 1964 г., когда профессор Ф. Коттон предложил называть кластерами химические соединения, в которых атомы металла образуют между собой химическую связь. Как правило, в таких соединениях атомы металлов (М) связаны с лигандами (L). оказывающими стабилизирующее действие и окружающими металлическое ядро кластера наподобие оболочки. Такие кластеры обычно называют молекулярными кластерами металлов, причем ядро может насчитывать от единиц до нескольких тысяч атомов. Кластерные соединения металлов с общей формулой M m L n классифицируют на малые (т/п 1), средние (т/п ~ 1), большие (т/п > 1) и гигантские (т » п) кластеры. Малые кластеры содержат обычно до 12 атомов металла, средние и большие - до 150, а гигантские (их диаметр достигает 2... 10 нм) - свыше 150 атомов. Примером таких систем могут служить кластеры палладия (Рф^, | phen(,o(0Ac) i go, где phen = = С 6 Н 5 ; ОАс = СН 3 СОО) или кластерные анионы молибдена ({Mo ^ Mo ^ 04^2II1 д(НдО)7о) 14). К кластерам относят также наноструктуры упорядоченного строения, имеющие заданную упаковку атомов и правильную геометрическую форму.

В последнее десятилетие XX в., с развитием нанотехнологии и усовершенствованием методов синтеза наноматериалов, ученые стали использовать термин «нанокластер», который по сути является синонимом термина «кластер» и объединяет в одну группу молекулярные кластеры, газовые безлигандные кластеры, коллоидные кластеры, твердотельные нанокластеры и матричные кластеры.

Кластеры, не требующие стабилизации лигандами (безлигандные, или свободные, кластеры), как правило, стабильны только в вакууме, но иногда встречаются и в свободном виде, например в природе обнаружены метастабильные кластеры золота. В обычных условиях безлигандные кластеры диаметром менее 3 нм неустойчивы. Для повышения стабильности их поверхность покрывают полимерами или вводят в инертную матрицу (так называемая матричная изоляция). К числу безлигандных кластеров относят и фуллерены.

Коллоидные кластеры образуются в результате химических реакций в растворах, и по отношению к жидкой фазе их можно разделить на лиофильные (гидрофильные) и лиофоб- ные (гидрофобные). Лиофильные кластеры, в отличие от лио- фобных, сорбируют на своей поверхности молекулы растворителя, образуя с ними прочные сольватные комплексы. Типичными представителями гидрофильных кластеров являются оксиды кремния, железа и других металлов в водной среде.

Твердотельные нанокластеры образуются в результате различных превращений в твердой фазе. Множество твердофазных взаимодействий сопровождается образованием зародышей продукта реакции, размеры которых увеличиваются при последующей термической обработке.

Матричные нанокластеры представляют собой изолированные друг от друга кластеры, заключенные в твердофазную матрицу, предотвращающую процессы агрегации.

Известна еще одна форма уникальных кластеров, называемых сверхкластерами. Это кластеры, которые содержат в узлах решетки не отдельные атомы, а более мелкие кластеры или наночастицы. При этом, как и в случае гигантских кластеров, наиболее устойчивым конфигурациям отвечают сверхкластеры, имеющие форму правильного икосаэдра с завершенным числом слоев, т.е. агрегаты, в которых число наночастиц соответствует «магическим» числам.

Использование свободных нанокластеров в качестве функциональных материалов практически невозможно ввиду их крайне низкой стабильности и значительной склонности к агрегации. В то же время кластеры, растворенные в жидкой фазе (коллоидные кластеры), и кластеры, заключенные в твердофазную матрицу (твердотельные или матричные нанокластеры), являются типичными примерами функциональных нанокомпозитов, известных человечеству уже тысячи лет (например, окрашенные нанокластерами металлов стекла научились получать еще в Древнем Египте). Внедрение нанокластеров в матрицу позволяет стабилизировать нанофазу, избежать агрегации и защитить матрицу от внешних воздействий. Свойства и методы получения таких нанокластеров будут подробно рассмотрены в следующих главах.

В настоящей главе основное внимание уделено методам получения и свойствам свободных нанокластеров, являющихся самыми простыми «модельными» представителями нано- мира, на примере которых проще всего исследовать фундаментальные свойства наночастиц.

Представление о механизмах формирования кластеров можно получить, изучая процессы зародышеобразования. В 40-х гг. XX в. появилась теория, разработанная М. Фольме- ром, Р. Беккером и В. Дерингом, а впоследствии переработанная Я.И. Френкелем и Я.Б. Зельдовичем. Она основана на предположении, что зарождающиеся кластеры новой фазы ведут себя как сферические жидкие капли, находящиеся в атмосфере пересыщенного пара (капиллярное приближение). Свободная энергия этих кластеров складывается из положительной свободной поверхностной энергии и отрицательной свободной объемной энергии, определяемой разностью энергии пересыщенного пара и жидкости. Свободная поверхностная энергия является результатом формирования поверхности раздела фаз между каплей жидкости и газом. Для кластера, состоящего из п атомов или молекул, поверхностная энергия может быть выражена уравнением

где а - поверхностное натяжение, или поверхностная энергия на единицу площади; Л(п) - площадь поверхности кластера; v - объем одной молекулы или атома. При переходе п молекул из газовой фазы в кластер вклад объемной энергии Е/, в свободную энергию формирования кластера составляет н(р[ - Pj,), где Ц| и - химические потенциалы жидкости и газа соответственно. В предположении идеального газа

где к в - константа Больцмана; Т - температура, S - пересыщение, выраженное соотношением

где Р - давление пара; Р е - давление насыщенного пара при данной температуре. Таким образом, свободная энергия формирования кластера, состоящего из п атомов или молекул:

Это выражение позволяет определить вклады объемной и поверхностной энергии при формировании кластеров и оценить их концентрацию и стабильность в пересыщенном паре. Очевидно, что положительная энергия поверхности раздела фаз препятствует начальному зародышеобразованию, т.е. существует энергетический барьер, который должна преодолеть система для инициирования процесса образования кластеров. Минимальный размер кластера (содержащего п* молекул или атомов) в равновесных условиях можно легко подсчитать из условия dE/dn = 0:

Размер г* носит название критического размера кластера или зародыша, причем кластеры с меньшим размером термодинамически неустойчивы. Подставляя величину п* в уравнение (2.4), можно определить высоту энергетического барьера, который следует преодолеть системе для начала процесса зародышеобразован ия:

Увеличение степени пересыщения ведет к уменьшению критического размера кластера и понижению энергетического барьера. Это увеличивает вероятность того, что флуктуации в системе позволят некоторым кластерам вырасти настолько, чтобы преодолеть барьер и перейти в стабильное состояние.

На рис. 2.1 приведены расчетные кривые зависимости свободной энергии от размера частиц для различных металлических кластеров = 0,5 мм рт. ст., Р е = 0,01 мм рт. ст.; для металлов Cs, К, Al, Ag, Fe и Hg температура, при которой достигается равновесное давление Р е = 0,01 мм рт. ст., составляет 424, 464, 1472, 1262, 1678 и 328 К соответственно).

Необходимо отметить, что степень пересыщения S можно повысить, увеличивая давление пара Р или понижая равновесное давление Р е. Первое можно сделать путем повышения числа атомов в паре или понижения числа атомов, покидающих зону зародышеобразования. Равновесное давление можно уменьшить, понижая температуру системы:


Рис. 2.1.

где Р 0 - константа; 7(0) - удельная скрытая теплота при О К; R - универсальная газовая постоянная.

Скорость гомогенного зародышеобразования 7, определяемая как число образовавшихся кластеров в единице объема в единицу времени, может быть выражена уравнением

Фактор К включает как коэффициент эффективности столкновений молекул пара с кластерами размера п , так и величину отклонения распределения кластеров по размерам от равновесного. Критическое пересыщение S c может быть определено как пересыщение, при котором скорость гомогенного зародышеобразования7 равна единице. Используя значения поверхностного натяжения, плотности и равновесного давления объемного вещества при 7=1, можно оценить величину критического пересыщения S c . На рис. 2.2 приведены температурные зависимости критического пересыщения для некоторых металлов. Таким образом, при низких температурах значения критического пересыщения достаточно высоки, а критический размер зародыша, напротив, мал. Аналогичный вывод можно сделать на основе уравнения 2.9, из которого

Рис. 2.2. Зависимость критического перенасыщения S c от температуры для паров калия (а) и алюминия (б)

видно, что высокие значения S c легче достигаются при низких температурах.

Анализируя сделанные допущения, можно заключить, что представленная теория неприменима в области высоких пересыщений. В последнем случае изменение состояния газа в точке зародышеобразования происходит намного быстрее, чем необходимо для установления локального метастабилыю- го равновесия. Кроме того, при очень высоких пересыщениях кластеры могут включать менее десятка атомов, в связи с чем использование величин поверхностного натяжения и плотности, характерных для объемных веществ, в отношении таких зародышей представляется неразумным.

Другая проблема состоит в использовании капиллярного приближения к кристаллическим кластерам (т.е. кристаллический кластер рассматривается в предположении жидкой капли), хотя на практике величины поверхностного натяжения при соответствующих температурах, как правило, неизвестны.

Несмотря на кажущуюся простоту и описанные выше недостатки, классическая теория зародышеобразования, разработанная более полувека назад, с успехом используется и сейчас для описания процессов формирования нанокластеров из газовой атмосферы. С некоторыми допущениями она может быть использована и используется для описания процессов кристаллизации из растворов.

Реферат

Нанокластеры и нанокластерныесистемы: организация, взаимодействие, свойства

Введение

наносистема изолированный кластерный

За последнее десятилетие в изучении нанокластеров и наноструктур произошел гигантский скачок. Появилось огромное количество публикаций, посвященных как фундаментальной науке о нанокластерах и наноструктурах, так и возможностям их применения в нанотехнологиях (создание устройств с магнитной записью, нанодиодов, нанопроволок; устройств одноэлектронного переноса, перестраиваемых за счет изменения размера нанолазера; получение новых наноматериалов с особыми механическими, тепловыми, электронными, оптическими и магнитными свойствами).

Известно, что при переходе от макроструктур к микроструктурам, размер которых лежит в нанометровом диапазоне, свойства вещества существенно изменяются. Так, нанокластеры в конденсированном состоянии имеют иные параметры кристаллической решетки, теплоемкость, температуру плавления и электропроводность, чем соответствующие макрокристаллы. Кроме того, у них появляются новые оптические, магнитные и электронные характеристики, изменяются реакционные и каталитические свойства. При этом свойства наноструктур определяются не только размером кластеров, но и способами их организации или самоорганизации в нанокластерную структуру, в которой кластеры выступают в роли отдельных атомов. Наноструктуры, в свою очередь, могут образовывать надмолекулярные структуры.

Способы организации нанокластеров в наноструктуры зависят не только от свойств изолированных нанокластеров и межкластерных взаимодействий, но и от методов получения нанокластеров. В связи с этим можно выделить несколько основных направлений в изучении нанокластеров и кластерных наносистем:

методы получения и классификация нанокластеров;

свойства изолированных нанокластеров;

способы организации (самоорганизации) кластерных наносистем;

свойства нанокластерных систем.

1. Синтез и классификация нанокластеров и нанокластерных структур

Как уже отмечалось, многие свойства нанокластеров и наносистем зависят от способов их получения. Поэтому мы попытались провести классификацию кластеров, исходя из методов их синтеза. Такой эмпирический подход позволяет представить все многообразие свойств кластеров и кластерных систем, взяв за основу их происхождение. В зависимости от способа получения кластеры можно разделить на шесть групп: молекулярные, газофазные, коллоидные, твердотельные, матричные и пленочные. Изолированные нанокластеры могут быть получены в результате химических реакций (молекулярные кластеры), путем лазерного испарения (газофазные кластеры) или путем матричной изоляции (при твердотельном и коллоидном синтезах). Наносистемы образуются в основном в результате твердотельного и коллоидного синтезов.

Молекулярные лигандные кластеры металлов

Молекулярные кластеры металлов - это многоядерные комплексные соединения, в основе молекулярной структуры которых лежит окруженный лигандами остов (ячейка) из атомов металлов (число их должно быть больше двух), непосредственно связанных между собой. Длины связей металл - металл в кластере обычно короче, чем в массивном металле.11 Металлический остов представляет собой цепи различной длины и разветвленности, циклы, полиэдры, а также комбинацию из перечисленных структурных элементов. Известны гомо- и гетерометаллические кластеры.

Молекулярные лигандные кластеры металлов образуются из металлокомплексных соединений в результате протекания различных химических реакций. Синтезу, структуре и свойствам молекулярных кластеров металлов посвящено огромное количество публикаций (см., например, монографию 11 и ссылки в ней).

Газофазные безлигандные кластеры

Безлигандные кластеры металлов или оксидов металлов получают, например, путем лазерного испарения металлов с подложки с последующим разделением по размерам (по массе) на время-пролетном масс-спектрометре. Образующиеся в процессе испарения кластеры фиксируют в ловушках (на подложках) и затем изучают их электронные, оптические и другие свойства. Полученные таким путем кластеры содержат от десятков до сотен атомов. Синтез больших нанокластеров (>100 нм) осуществляют путем разогрева и испарения металлов в высокочастотном электромагнитном поле в вакууме или инертном газе с последующим осаждением кластеров на подложке или фильтре. Применение подложки необходимо, поскольку наночастицы очень активны и при столкновении слипаются, а подложка играет роль стабилизатора.

Еще один способ получения газофазных кластеров металлов - испарение металлов в инертном газе с последующим образованием кластеров металлов в низкотемпературной матрице (криохимический метод).

Газофазные методы синтеза применяются и для получения углеродных кластеров (в частности, фуллеренов). Так, лазерным испарением графита в 1985 г. был получен первый фуллерен С60. Синтезированы также фуллерены состава Сзб, С70, С82, С84, С90, С96.

Среди других газофазных безлигандных кластеров следует отметить ван-дер-ваальсовы кластеры благородных газов и воды.

Метод испарения-конденсации позволяет получать наиболее чистые металлические частицы, поэтому он и в настоящее время не потерял своей актуальности. Однако, применяя данный метод, трудно управлять размерами образующихся металлокластеров. Полученные таким путем кластеры характеризуются широким распределением по размерам.

Коллоидные кластеры и наносистемы

Коллоидные растворы, содержащие нанокластеры металлов и их соединений, известны давно, однако в связи с необходимостью получения организованных наноструктур возникла потребность в синтезе монодисперсных коллоидных систем с регулируемым размеров кластеров. Для синтеза монодисперсных коллоидных систем обычно используют золь-гель - технологию, включающую получение золя и последующий перевод его в гель. Для получения золей применяют диспер - гационные и конденсационные (физические и химические) методы. Так, при гидролизе солей металлов или алкоксидов металлов образуются золи оксидов и гидроксидов металлов, которые характеризуются большим избытком энергии. Благодаря избыточной энергии в таких системах происходит агрегирование золей, сопровождающееся образованием геля. В результате получаются наноструктуры с размером до 100 нм.

В последнее время для синтеза нанокластеров с узким распределением частиц по размерам стали использовать микроэмульсионные системы (прямые и обратные мицел - лы) Т Таким путем были получены многие кластеры металлов с размерами от 1 до 10 нм.

Твердотельные кластеры

Твердотельные кластеры формируются в результате разнообразных превращений твердой фазы: в ходе химических реакций в твердой фазе, в процессе перехода из аморфной фазы в кристаллическую, в ходе механохимических превращений и т.д. Многие химические реакции в твердом теле, например реакции термического разложения солей и комплексов металлов, сопровождаются образованием зародышей металлов или оксидов металлов и последующим их ростом за счет спекания. Размер образующихся при этом нанокластеров изменяется в чрезвычайно широком диапазоне: от одного до сотен нанометров.

Для получения нанокластеров из аморфных сплавов используют кристаллизацию. Условия кристаллизации поддерживаются таковыми, чтобы создать как можно больше центров кристаллизации, при этом скорость роста нанокластеров должна быть медленной.

Твердотельные нанокластеры могут быть получены и в результате фотохимических реакций, например, с участием галогенидов серебра. В этих реакциях также происходит сначала образование зародышей, а затем их укрупнение, сопровождающееся образованием нанокластеров с размерами от десятков до сотен нанометров.

Помимо химических реакций в твердом теле для получения твердотельных кластеров можно использовать механохимические превращения. Так, при механическом измельчении массивного твердого тела можно получить нанокластеры, размер которых не превышает несколько нанометров. При этом за счет активации вновь создаваемой поверхности могут возникать новые нанокластерные соединения, отличные от первоначальных.

Еще один способ получения твердотельных нанокластеров состоит в наноструктурировании материала под действием давления со сдвигом. За счет увеличения давления до 5 ГПа и сдвига до 1000° удается получать нанокластеры с размерами зерен, достигающими нескольких нанометров, и со свойствами, резко отличающимися от свойств исходного материала. Нанокластеры образуются также при иных способах пластической деформации.

Матричные кластеры

Методы получения нанокластеров с использованием различного рода неорганических и органических матриц и матричной изоляции приобрели самостоятельное значение, хотя они могут включать элементы газофазного, твердотельного и других методов. Дело в том, что нанокластеры, полученные с использованием матриц, отличаются от кластеров, образующихся, например, в твердотельных химических реакциях, тем, что они могут быть изолированы друг от друга матрицей, поэтому нагревание всей наносистемы не приводит к увеличению размера кластера за счет спекания. Оригинальность данного подхода состоит в возможности ограничения дисперсии нанокластеров по размерам и направленного изменения межкластерных взаимодействий. Так, для получения газофазных кластеров металлов используют метод микрокапсулирования нанокластеров в инертных газах при низкой температуре.

Часто кластеры и кластерные системы получают в результате проведения химических реакций в растворе с последующим осаждением образующихся соединений в порах твердых веществ. Нанокластеры и наносистемы образуются также при пропитывании пористых матриц растворами и проведении химических реакций в поре, как в микро- или нанореакторе. Таким путем синтезируют, например, кластеры металлов и оксидов металлов в цеолитах, при этом размер кластера определяется размером ячеек цеолитов (1 -2 нм). В этом случае алюмосиликаты способствуют формированию организованных кластерных структур.

Широкие возможности для варьирования размера и состава кластеров открываются при использовании неорганических и органических сорбентов (например, силикагелей и алюмогелей, ионообменных смол и полисорбов). В этом случае изменение размеров кластеров и их организации происходит как за счет изменения размера пор, так и за счет варьирования гидрофильности (или гидрофобности) поверхности, концентрации исходных компонентов, температуры и т.д.

Нанопленки

Для нанокластеров, образующихся в нанопленках, характерен иной механизм зарождения и роста, отличный от механизма образования твердотельных кластеров, поскольку их синтез связан с химией поверхности (с формированием двумерных структур). Для получения эпитаксиальных нанопленок на ориентированной кристаллической поверхности используют лазерное испарение и молекулярные пучки.

В последнее время для нанесения нанокластерных нанопленок на поверхность стал широко применяться CVD - метод. По этому методу исходные вещества сначала испаряют, затем переносят их через газовую фазу и осаждают в нужной пропорции на выбранную подложку.

Для создания контролируемых по составу и толщине молекулярных слоев используют метод молекулярного наслаивания, суть которого состоит в организации поверхностных химических реакций с пространственным и временным разделением. Таким путем были получены нанопленки, содержащие от одного до десяти монослоев.

Развиваемая в последнее время технология синтеза пленок Ленгмюра-Блоджетт позволяет вводить в формирующуюся на поверхности воды пленку из поверхностноактивных веществ (ПАВ) ионы металлов и их комплексы и получать на их основе нанокластеры. Такой подход позволяет формировать пленки Ленгмюра-Блоджетт с упорядоченным монослоем кластеров, а затем наносить их с помощью специальной техники на твердую подложку. Эту процедуру можно повторять, формируя тем самым многослойные пленки и сверхструктуры.

2. Свойства изолированных нанокластеров

Кластеры занимают промежуточное положение между отдельными молекулами и макротелами. Поэтому свойства единичного изолированного кластера можно сравнивать как со свойствами отдельных атомов и молекул, так и со свойствами массивного твердого тела.

Понятие «изолированный кластер» весьма абстрактно, поскольку практически невозможно получить кластер, не взаимодействующий с окружающей средой. Кроме того, при изучении свойств изолированных кластеров необходимо учитывать их взаимодействие с измерительным прибором, которое может менять свойства кластера в процессе измерения. Особенно это относится к контактным способам измерения (например, с использованием туннельного микроскопа). Однако эти изменения не велики, и в настоящем обзоре такие взаимодействия рассматриваться не будут. Учитывая, что молекулярные кластеры металлов, ван-дер - ваальсовы кластеры благородных газов и воды, газофазные кластеры металлов и фуллерены обладают слабыми межкластерными взаимодействиями, их можно условно рассматривать как изолированные кластеры.

В настоящем разделе мы рассмотрим структуру, атомную динамику, электронные, оптические и магнитные свойства изолированных кластеров.

Газовые безлигандные кластеры

Безлигандные кластеры не имеют лигандной оболочки, влияющей на свойства поверхностных атомов ядра, этим они отличаются от молекулярных кластеров. Безлигандные кластеры были получены почти для всех элементов Периодической системы. Можно выделить несколько групп безли - гандных кластеров, обладающих характерными свойствами: кластеры щелочных металлов, углеродные кластеры, кластеры инертных газов и ван-дер-ваальсовы кластеры

Кластеры щелочных металлов

Свойства кластеров щелочных металлов хорошо описываются с помощью модели желе или, что то же самое, капельной оболочечной модели. Согласно этой модели, кластер рассматривают в виде двух подсистем: объединенных в ядро положительно заряженных ионов и делокализованных х-электронов, которые могут образовывать оболочки, подобные электронным оболочкам в атоме. Заполнение электронной оболочки в атоме происходит при числах электронов пе = 2,8,18,20, 34,40 ит. д., что соответствует заполнению 1х, 1 р, 1d, 2х, 1/, 2 р и т.д. оболочек. Количество атомов металла в кластере, соответствующее количеству электронов в заполненных оболочках, называют «магическим» числом. «Электронные магические» числа t отвечают наиболее устойчивым электронным конфигурациям кластеров с заполненными оболочками. Они были обнаружены экспериментально при определении величины ионизационного потенциала и сродства к электрону.

Кластеры переходных металлов

В этом разделе основное внимание уделено стабильности и реакционной способности кластеров переходных металлов и их магнитным свойствам. Ранее отмечалось, что стабильность и реакционная способность кластеров обусловлены двумя рядами «магических» чисел, один из которых связан с геометрическим фактором (плотной упаковкой), как у лигандных кластеров металлов, а другой - с электронным оболочечным строением, как у кластеров щелочных металлов. Свойства большинства безлигандных кластеров переходных металлов определяются как электронной, так и геометрической структурой. Кроме того, для безлигандных кластеров переходных металлов особое значение приобретает способность атомов металлов находиться в разных окислительных состояниях, поэтому их свойства не могут характеризоваться простой оболочечной моделью, как свойства кластеров щелочных металлов. Исключение составляют атомы Си, Ag и Au, у которых f-оболочка заполнена и сжата, так что в связывании участвуют только х-электроны.

Одна из основных характеристик нанокластеров металлов - энергия ионизации. Согласно капельной модели, она должна возрастать с уменьшением размера кластера по закону 1/R. Однако рассчитанная с использованием этой модели энергия ионизации кластеров Fe», Сои и Nb» оказалась существенно ниже величины, полученной в эксперименте. Кроме того, для малых кластеров с п <25 наблюдалась нерегулярность в изменении энергии ионизации от размера: энергия ионизации для кластеров с четным числом атомов больше, чем с нечетным. Отклонение от капельной модели указывает на различие в формирующейся в процессе изменения п (четное или нечетное) электронной полосы.

Ван-дер-ваальсовые кластеры инертных газов и других малых молекул

Свойства кластеров, образуемых атомами инертных газов, обусловлены слабыми ван-дер-ваальсовыми взаимодействиями. Стабильность таких кластеров, как и стабильность молекулярных лигандных кластеров металлов, связана с «магическими» числами, характеризующими геометрическую плотнейшую упаковку. Кластеры инертных газов с п = 3 имеют форму треугольника, с п = 4 - тетраэдра, с п = 7 - пентагональной пирамиды, а начиная с п = 13 у кластеров возникает икосаэдрическая геометрия. Следующие икосаэдры образуются при п = 55, 147, 309, 561 и т.д., т.е. при п, равных «магическим» числам. Для кластеров с п > 800 выгодной становится гранецентрированная кубическая упаковка.

Для кластеров инертных газов изучались эффекты, связанные с фотопоглощением, флуоресценцией, порогами фотоионизации и фотофрагментации, а также с образованием и релаксацией экситонов. Для возбуждения флуоресценции использовали синхротронное излучение.

Для кластеров криптона исследовали экситонные переходы. Были изучены самые разнообразные кластеры Кгп, а также атомарный Кг и его массивный образец (рис. 5).Атомный спектр Кг (рис. 5, а) содержит две узкие линии, обусловленные переходом 4p64p 5 5s (спин-орбитальное расщепление). В спектрах кластеров Кгп (рис. 5, Ь -е) появляются линии, отвечающие экситонным переходам. При возбуждении электрона на атоме Кг появляется положительный заряд (дырка). Электрон и дырка образуют серию водородоподобных состояний, которые и проявляются в спектрах флуоресценции в виде уширения, сдвига и дополнительных линий.

Кроме различий в спектрах атомов, кластеров и массивных тел, наблюдались также спектральные различия для атомов на поверхности и внутри кластера. Так, в спектрах кластеров XemAr» (п = 1000) обнаружены линии, отвечающие атомам Xe, находящимся на поверхности внутри кластеров Агп, а также встроенным в каркас из атомов Ar.

В заряженных кластерах инертных газов заряд не делокализуется по всему кластеру, как, например, в кластере NaJ, а локализуется на небольшом структурном фрагменте (на димере, тримере или тетрамере), при этом остальной кластер остается нейтральным, как, например, в (ArJ) Ar «_x = 3, 4).

Извеетны также ван-дер-ваальсовы кластеры, построенные из молекул Н20, С02, SF6 и СбНб, епоеобных образовывать елабые ван-дер-ваальеовы поляризационные или водородные евязи. Так, для клаетеров (С02)», (SF6)n и (С6Н6)п энергия ван-дер-ваальеовых евязей меньше 0.1 эВ, для (HF)», (Н20)» и (СН30Н)3 - меньше 0.3 эВ.96 Клаетеры е небольшим чиелом молекул п <5 могут иметь кольцевую етруктуру. Малые клаетеры е 5 < п ^ 20 имеют нееиммет - ричную етруктуру за ечет приеоединения к кольцевому фрагменту боковых цепей, при этом клаетер выглядит как фрагмент аморфной или жидкой етруктуры. Эта тенденция еохраняетея до тех пор, пока размер клаетера не доетигает п = 20. Поеле этого наблюдаетея переход к упорядоченным етруктурам, характерным для крупных клаетеров. Структура молекулярных клаетеров характеризуетея быетрыми дина - мичеекими переходами между различными конформациями. Изменение ширины и положения полое в ИК-епектрах таких клаетеров евидетельетвует об изменении чиела молекул в них.

Особый интерее предетавляют клаетеры воды, из которых еоетоит жидкая вода и лед. Они также учаетвуют в формировании облаков и дождей. Прогреее в облаети лазерной епектроекопии и методов молекулярной динамики позволил определить ряд евойетв клаетеров воды, обуело - вленных их динамичеекой етруктурой. Была получена информация о геометричеекой етруктуре и туннелировании водородных евязей в три-, тетра-, пента- и гекеамерах воды. Вычиеления предеказывают плоекую етруктуру для три-, тетра- и пентамеров воды и объемную етруктуру для гептамера и клаетеров больших размеров. Оптимальная конфигурация характеризуетея макеимальным чиелом водородных евязей и минимальными геометричеекими напряжениями. Данные ИК-епектроекопии подтверждают эти предеказания. Для три-, тетра- и пентамеров были найдены чаетоты 206, 304 и 658 см-1 еоответетвенно, отвечающие барьерам переетройки конфигурации водородных евязей. Клаетеры воды образуютея также при гидратации газовых и коллоидных кластеров, в чаетноети, при гидратации макромолекул и белков.

Коллоидные кластеры

Коллоидные клаетеры образуютея в раетворах в результате химичееких реакций и имеют размеры в пределах от 1 до 100 нм. Они могут длительное время еущеетвовать в жидкой фазе, не оеаждаяеь и не коагулируя, благодаря елабым меж - клаетерным взаимодейетвиям, зарядовому отталкиванию и паееивации поверхноети. По отношению к жидкой ереде коллоидные клаетеры могут быть разделены на две группы: лиофильные (гидрофильные) и лиофобные (гидрофобные).

Лиофильные клаетеры могут еорбировать на евоей поверхноети молекулы окружающей ереды и образовывать е ними прочные еольватные комплекеы. Клаетеры этого типа окружены жидкой оболочкой, которая чаетично еохраняетея и при коагуляции отдельных клаетеров, и при переходе их в гелевую наноеиетему. Наиболее типичными предетавите - лями гидрофильных клаетеров являютея океиды кремния, железа и других металлов.

Лиофобные клаетеры не адеорбируют на евоей поверх - ноети молекулы раетворителя. Однако их поверхноеть можно модифицировать ионами из раетвора, при этом она приобретет положительный или отрицательный заряд. В разделе III.1 раеематривалиеь етруктура и евойетва гигантеких клаетеров Pd, которые по епоеобу приготовления и размерам (1.4-2.0 нм) могут быть отнееены к коллоидным клаетерам.

Обычно коллоидные клаетеры металлов для предотвращения елипания паееивируют различными лигандами. В ка - чеетве таких лигандов могут выетупать, например, тиолы, трифенилфоефин и его производные, фенантролин. Были получены коллоидные клаетеры таких полупроводников, как СdS, СdSe, СdTe, Sn02, ТЮ2, Fe203, M0S2, S, InAs, GaP, GaAs, BiI3 и др.

Слабое межклаетерное взаимодейетвие в раетворах коллоидных клаетеров позволяет иееледовать их индивидуальные евойетва. Наиболее впечатляющие оптичеекие евойетва, приеущие коллоидным клаетерам, - едвиг чаетоты поглощения и изменение еилы оециллятора при изменении размера клаетера. С уменьшением размера наноклаетера полоеы, отвечающие электронному возбуждению, едвигаютея в облаеть выеоких энергий и еила оецилляторов концентри - руетея на неекольких переходах. Эти эффекты евязаны е переходом от полоеного епектра, отвечающего переходам между зонами проводимоети и валентной зоной маееивного образца, к линейчатому епектру клаетера. Имеютея также данные о том, что е уменьшением размера клаетера еокра - щаетея время жизни возбужденных еоетояний.

3. Кластерные наносистемы и наноструктуры

В этом разделе будут обсуждены принципы и подходы к формированию наносистем из кластеров, из отдельных кластеров и матриц, а также из массивного материала. Будут рассмотрены такие свойства наноструктур, как внутрикластерная атомная динамика, межкластерная динамика, а также структурно-механические, электропроводящие, оптические и магнитные свойства.

Формирование наноструктур. Организация и самоорганизация

Организация и самоорганизация нанокластеров в наноструктуры представляет важную задачу, решение которой позволит приблизиться к созданию материалов нового поколения с уникальными свойствами. Свойства этих материалов можно менять двумя путями: за счет изменения размеров нанокластеров и за счет изменения межкластерных взаимодействий. Организация наноструктуры из нанокластеров происходит по тем же законам, что и формирование кристаллов из атомов, однако у кластеров имеется одно существенное отличие от атомов - у них существует реальная поверхность и реальные межкластерные границы.§ Поэтому формирование наносистем из нанокластеров сопровождается возникновением большого количества дефектов и напряжений, что приводит к кардинальному изменению свойств наносистемы.

Наноструктуры и наносистемы могут быть сформированы из кластеров любых типов. Однако прежде чем приступить к рассмотрению процессов формирования наносистем из твердотельных и матричных кластеров необходимо вначале рассмотреть процессы первичной кластерной нуклеации, так как свойства и структура таких кластеров существенно зависят от их взаимодействий с матрицей.

Рассмотрим образование наносистем из твердотельных нанокластеров на примере термического разложения солей железа. Процесс разложения солей железа при температуре выше некоторой критической (или пороговой) начинается с формирования подвижной активной реакционной среды, в которой происходит зарождение нанокластеров оксидов железа.119 При этом процесс формирования кластеровЭти же границы возникают и при измельчении массивного образца, например, с помощью мельницы или пластической деформации.

Коллоидные наносистемы

Наноструктуры, полученные из коллоидных растворов и золей с применением золь-гель-технологии, можно использовать в проводящих системах, в оптике и катализе. Весьма перспективны системы, состоящие из алкоголятов циркония, титана или алюминия (Zr (OPr»)4, Ti (OBu»)4, Al (OPr»)3) и комплексов железа или кобальта.140 На их основе были получены нанокластерные системы-катализаторы на носителях, например, FeO/ZrO2, FeO/TiO2, FeO/Al2O3. Размер кластеров варьировали путем изменения концентрации компонентов и температуры прогрева. Однако из полученных с помощью золь-гель-технологии кластеров нельзя создавать организованные наноструктуры вследствие большого разброса нанокластеров по размерам. Более перспективен способ организации наноструктур из кластеров, полученных с применением прямых и обратных мицелл. Такие кластеры отличаются узким распределением по размерам.

Поскольку обратные микроэмульсии обладают большой подвижностью и большой поверхностью раздела между фазами, они могут служить универсальной средой для проведения многих химических синтезов, в том числе для получения кластеров металлов, сульфидов металлов и др. В микроэмульсионной среде из-за броуновского движения капли постоянно сталкиваются, коалесцируют и разрушаются вновь, что приводит к непрерывному обмену их содержимым.

Организация фуллеренов, фуллеридов, фуллереноподобных структур и нанотрубок

Фуллерены являются весьма удобным строительным материалом для формирования наноструктур, поскольку они обладают идеальной монодисперсностью и сферической формой. Организация и самоорганизация коллоидных и газофазных фуллеренов в наноструктуры (фуллериды) осуществляется путем прогрева, прессования и т.д. В водном растворе звездообразные гексаанионные производные Ce0[(CH2)4S03] g образуют сферические агрегаты, включающие четыре молекулы.148 Форма, размер и структура агрегатов исследовались с помощью малоуглового рассеяния нейтронов и рентгеновских лучей. Была обнаружена удивительная стабильность таких агрегатов: их объем и форма не зависели от концентрации фуллеренов и от межагрегатного взаимодействия.

Более крупные агрегаты были сформированы из коллоидных растворов фуллерена Сб0 в бензонитриле при концентрациях Сб0 более 100 мкмоль л-1 (при меньшей концентрации Сб0 в растворе присутствуют только отдельные молекулы фуллерена).149 В этом случае средний размер агрегата достигал ~250 нм. Эти агрегаты, представляющие собой динамичную систему, зафиксированы с помощью пикосекундного фотолиза. В бензоле и декалине подобные агрегаты не образуются вплоть до концентраций 500 мкмоль л-1. По-видимому, на формирование агрегатов влияют полярность растворителя и симметрия молекул, объединяющихся в агрегаты. Так, несимметричная молекула С70 не образует агрегатов ни в полярном бензонитриле, ни в неполярных бензоле и декалине.

Значительный интерес представляет получение и исследование нанокристаллов фторидов фуллеренов C60FX, C60F36, C60F48.84-150-151 Найдено, что при комнатной температуре кристаллы C60F36 имеют ОЦК-решетку, а C60F48 - объемноцентрированную тетрагональную. Данные высокотемпературной (Г = 353 К) рентгеновской дифракции in situ свидетельствуют о фазовом переходе в нанокристалле C60F48: решетка из объемноцентрированной тетрагональной превращается в гранецентрированную кубическую.

Нанопленки

Нанопленки представляют собой двумерные структуры. Cуществуют многочисленные приемы нанесения или выращивания пленок на металлических, оксидных, халькогенид - ных и других подложках. Наиболее распространенным способом получения организованных пленок является нанесение из газовой фазы атомов или молекул на поверхность монокристалла и создание на их основе эпитаксиальных или поликристаллических атомных или молекулярных слоев.

Значительные успехи достигнуты в синтезе пленок из фуллеренов на подложках из различных материалов - металлов,155-156 полупроводников,157 159 слоистых материалов,160-161 изоляторов162 и др. Однако до сих пор не решен вопрос о том, что влияет на тип формирующейся структуры (гранецентрированной, гексагональной или плотноупакованной). Можно лишь сделать выводы, что слабое взаимодействие молекул фуллерена с подложкой способствует формированию упорядоченного слоя из молекул C60, в то время как сильная хемосорбция молекул С60 на поверхности подложки приводит к формированию дезорганизованной, неупорядоченной структуры. В работе163 изучено строение тонкой пленки из молекул фуллерена, образующейся на поверхности графита. C помощью компьютерного моделирования было показано, что пленка C60, нанесенная на графит, имеет гексагональную структуру.

Пленки на поверхности подложки могут иметь также неравномерную, островковую организацию. Формирование пленок из газофазных кластеров на подложке зависит от времени, температуры и скорости их осаждения. Конечное состояние пленки определяется средним размером островков-кластеров и их плотностью: при этом чем больше размер островков, тем меньше их плотность.

Известно, что при низких температурах скорость атомной диффузии мала, поэтому формируются небольшие по размеру кластеры с большой плотностью. Эти же рассуждения можно перенести и на случай формирования пленок из кластеров. В работе164 рассмотрены особенности формирования наноструктур из кластеров сурьмы на аморфной поверхности угля в зависимости от числа атомов Sb в кластере (п = 4-2200). (Кластеры сурьмы получали конденсацией паров сурьмы в гелиевой ячейке, охлажденной жидким азотом.) Зависимость среднего размера (N) кластерных островковых структур от среднего размера (n) первичного кластера сурьмы проходит через минимум при п = 350 ± 50. Этот эффект авторы объясняют сужением распределения островковых структур по размерам по мере приближения размера кластера к оптимальному (п = 350 ± 50). C увеличением размера первичного кластера сурьмы скорость его диффузии на поверхности подложки уменьшается, а следовательно, уменьшается и вероятность коалесценции первичных кластеров в островковую наноструктуру. Каждый большой первичный кластер (от п > 400 до п = 2200 к N) адсорбируется на поверхности и сохраняется на ней в неизменном виде при некоторых значениях плотности первичного пучка. Из малых кластеров с п < 350 за счет больших скоростей диффузии удается создавать островковые структуры с большими N (>3000).

Одним из эффективных способов формирования нанопленок из кластеров является их осаждение из плазмы, а также химическое и физическое осаждение из газовой фазы (CVD и PVD).8-165 При осаждении из плазмы толщина пленки и размер кристаллитов в ней регулируются изменением давления газа и параметров разряда. Авторы работ166-167 получили пленки хрома на подложке из меди со средним размером кластеров-кристаллитов ~20 нм. Увеличение толщины пленки до 500 нм привело к ее кристаллизации. Ионоплазменное осаждение нитрида и карбида титана также приводит к формированию нанокристаллических пленок.165 Магнетронное распыление исходных веществ позволяет снизить температуру подложки на 100-200°С, что расширяет возможности получения нанопленок. Таким путем были получены №3А1-пленки с размером кристаллитов 20 нм.168

Получение нанопленок из коллоидных растворов было рассмотрено в предыдущем разделе на примере формирования наноструктур на основе сульфида серебра.21 Авторы

работы отмечают, что уже в пределах монослоя наблюдается гексагональная организация кластеров (3-5 нм). В целом для получения организованных нанопленок из коллоидных растворов необходимо иметь монодисперсные нанокластеры, которые за счет слабых межкластерных ван - дер-ваальсовых взаимодействий самоорганизуются в пленку.

В последние годы разработана технология, позволяющая формировать пленки на поверхности жидкости (пленки Ленгмюра-Блоджетт), а затем переносить их на поверхность твердого тела. Данный метод позволяет получать сверхрешетки и нанометровые слои органических молекул с заданным порядком чередования слоев.

Организация нанопленок методами химической сборки и молекулярного наслаивания описана в работе. В синтезе высокоорганизованных структур заданного состава методом химической сборки основную роль играют химические процессы, протекающие между функциональными группами, находящимися на поверхности твердого тела (подложки), и адсорбирующимися молекулами заданного состава. Таким способом наносят, например, организованные слои из кластеров оксидов металлов.

Свойства нанокластерных систем

Как уже отмечалось, изолированные нанокластеры обладают уникальными свойствами, связанными с нанометровым диапазоном их размеров. Однако в большинстве случаев нанокластеры находятся во взаимодействии друг с другом, что не только может привести к количественному изменению их свойств, но и вызвать возникновение новых свойств. Организация и самоорганизация кластеров в нанокластерные системы приводит к изменению многих свойств кластеров. Наиболее яркие свойства наносистем, такие как структурные фазовые переходы (в частности, в сегнетоэлект - риках и фуллеренах), оптические, электрические и магнитные (гигантское магнетосопротивление, квантовое магнитное туннелирование, магнитные фазовые переходы), связаны с атомной и кластерной динамикой.

При этом целесообразно рассмотреть как внутрикластерную атомную динамику, так и межкластерную динамику в наносистеме, где кластер движется, как единое целое.

Оптические и электрические свойства нанокластерных систем

Особые оптические и электрические свойства возникают у нанокластерных систем благодаря эффектам, связанным с ограничением длины свободного пробега электрона (квантовые ограничения) и с появлением дискретных энергетических полос в валентной зоне и зоне проводимости, что меняет правила отбора для оптических переходов. Возможно создание одноэлектронных нанокластерных систем, в которых по мере уменьшения размера кластера растет число дискретных энергетических полос и увеличивается энергия перехода электрона с одного электронного уровня на другой согласно формуле е 2 /2с (с да d). Эта энергия может стать больше кинетической энергии электрона (кТ ) и стимулировать туннельные переходы. Создание таких систем открывает новые возможности для получения выпрямительных устройств, диодов и т.д.

Магнитные свойства

На магнитные свойства нанокластерных систем влияют как размерные эффекты, так и межкластерные взаимодействия и кластерная организация. К числу наиболее известных и изученных явлений относится суперпарамагнетизм - изменение направления магнитного момента кластера как целого за счет тепловых флуктуаций без потери магнитного упорядочения. Образование магнитных доменов в кластерных системах зависит как от индивидуальных свойств кластеров (магнитной анизотропии), так и от межкластерных взаимодействий. Поэтому процессы намагничивания в таких системах сильно зависят от дефектности структуры кластеров и от межфазных границ.

Представляют также интерес эффекты магнитного квантового туннелирования и гигантского магнетосопротивле - ния. К новым эффектам следует отнести магнитные фазовые переходы первого рода в нанокластерах и нанокластерных системах, когда магнитное упорядочение и намагниченность исчезают скачком при повышении температуры или уменьшении размера кластера.

Эффекты гигантского магнетосопротивления. Эффект гигантского магнетосопротивления (ГМС) у кластеров заключается в огромном уменьшении сопротивления кластерного материала при помещении его в магнитное поле (на 1000%), в то время как магнетосопротивление массивного образца изменяется незначительно (например, сопротивление пермаллоя 80% Ni-20% Fe возрастает в магнитном поле на 3%). Эффекты ГМС наблюдали при изучении магнитных свойств различных металлических и оксидных наносистем, причем механизмы возникновения ГМС у нанокристаллических металлов и оксидов металлов различны.

Магнитные нанокластеры получают растворением одного металла (например, Fe или Со) в матрице другого (проводящего) металла (например, Си или Ag), причем эти два компонента должны плохо растворяться друг в друге. В наносистеме, состоящей из проводящей металлической матрицы и магнитных кластеров, происходит рассеяние электронов проводимости металлической матрицы на магнитных моментах кластеров. При наложении магнитного поля на образец направление магнитных моментов кластеров изменяется, что приводит к изменению их взаимодействия с электронами проводимости металлической матрицы, т.е. к изменению проводимости. Величина эффекта ГМС будет определяться соотношением между длиной свободного пробега электрона (I ) и расстоянием между соседними магнитными кластерами, которое зависит от концентрации растворенного металла. При большой длине свободного пробега электрон претерпевает многочисленные акты рассеяния прежде, чем он вступит во взаимодействие с магнитным кластером (при этом направление магнитного момента кластера не влияет на электронное рассеяние, и ГМС отсутствует). Если же длина свободного пробега достаточно мала, магнитные кластеры могут участвовать в перколляционных процессах матрицы и сильно взаимодействовать друг с другом, что также приводит к исчезновению ГМС.

Для системы, состоящей из кластеров Со, растворенных в матрице Ag (см.251), изменение концентрации Со от 10 до 50% сопровождается значительным изменением электрического сопротивления кластеров в магнитном поле. Максимальный эффект наблюдается при концентрации Со ~ 20%, что связывают с оптимальным размером кластеров Со в матрице Ag. Эффект ГМС возрастает при понижении температуры.

Заключение

Необычные свойства наноразмерных кластерных систем уже в течение многих лет привлекают внимание исследователей, и интерес к этим системам не ослабевает. В последнее время был достигнут значительный прогресс в изучении нанокластеров и нанокластерных систем. Это связано с тем, что современный уровень эксперимента позволяет не только получать отдельные нанокластерные частицы, но и исследовать их свойства.

Перечислим основные успехи, достигнутые в области создания новых нанокластерных систем:

разработаны методы получения монодисперсных нанокластеров, позволяющие получать упорядоченные наносистемы;

найдены способы регулирования кластерных размеров, межкластерных взаимодействий и напряжений, позволяющие формировать и изменять свойства наносистем;

предложены способы стабилизации нанокластерных систем путем пассивации изолированных кластеров;

предложены методы создания упорядоченных слоев и сверхрешеток с помощью пленочной и матричной репликации, а также введением спейсеров.

Дальнейший прогресс в области нанокластерной химии будет состоять в синтезе новых наноструктур, в создании и развитии теоретических и экспериментальных подходов к изучению механических, упругих, тепловых, электронных, оптических и магнитных свойств нанокластеров и наносистем. При этом необходимо придерживаться последовательности нанокластер - наносистема - наноустройство.

Полученные на основе молекулярных кластеров, фуллеренов и коллоидных кластеров упорядоченные системы и кластерные нанокристаллы могут быть использованы в нанотехнологии для создания одноэлектронных устройств, оптических выключателей и нелинейных систем, лазерных устройств с перестраиваемой за счет размера кластера длиной волны, квантовых магнетиков.

На основе фуллеренов могут быть получены одномерные проволоки, выпрямители, диоды, электролюминесцентные источники света, холодные катоды и плоские дисплеи.

Появилась возможность за счет варьирования механических свойств получать сверхпластичные материалы.

Создание упорядоченных нанослоев и сверхрешеток открывает путь к получению одноэлектронных устройств, голографических изображений, сверхплотной магнитной записи.

Литература

1. И.П. Суздалев, П.И. Суздалев Нанокластеры и нанокластерные системы. Организация, взаимодействие, свойства/ И.П. Суздалев, П.И. Суздалев // Успехи химии. - 2001. - Т. 70, №3. - С. 203 -240.

Похожие работы на - Нанокластеры и нанокластерныесистемы: организация, взаимодействие, свойства

Одним из распространенных методов получения наночастиц металлов является лазерное испарение атомов с поверхности (рис. 33).

Рис. 33. Установка для получения наночастиц металлов лазерным испарением атомов с поверхности.

Исследование масс-спектров потока получаемых наночастиц свинца показало, что кластеры из 7 и 10 атомов более вероятны, чем другие. Это означает, что они более стабильны, чем кластеры других размеров. Эти числа (для других элементов они могут иметь другие значения) называют электронными магическими числами. Их наличие позволяет рассматривать кластеры как суператомы, что и обусловило появление для опмсания металлических кластеров "модели желе".

В модели желе кластер атомов рассматривается как один большой атом. Положительный заряд ядра каждого атома кластера считается равномерно распределенным по шару с объемом, равным объему кластера. Такая сферически симметричная потенциальная яма моделирует потенциал взаимодействия электронов с ядрами. Таким образом, энергетические уровни кластера могут быть получены путем решения уравнения Шредингера для описанной системы, аналогично тому, как это делается для атома водорода. На рис. 33 показаны схемы энергетических уровней атома водорода и системы со сферически симметричным распределением положительного заряда. Верхние индексы относятся к количеству электронов, заполняющих данный энергетический уровень. Электронные магические числа соответствуют полному количеству электронов суператома, при которых верхний энергетический уровень заполнен до конца. Заметим, что порядок уровней в модели желе отличается от такового в атоме водорода. В этой модели магические числа соответствуют кластерам с такими размерами, при которых все уровни, на которых есть электроны, заполнены до конца.

Рис. 34. Сравнение энергетических уровней атома водорода и малоатомного кластера в модели желе. Электронные магические числа атомов Не, Ne, Аr, Кr составляют 2, 10, 18, 36 соответственно (уровни Кr на рисунке не показаны), и 2, 18, 40 для кластеров

Альтернативная модель, используемая для вычисления свойств кластеров, рассматривает их как молекулы и применяет для вычислений существующие теории молекулярных орбиталей, такие как теория функционалов плотности.

Кристаллическая структура наночастицы обычно такая же, как и у объемного материала, но с несколько отличающимся параметром решетки (рис. 35).

Рентгеновская дифракция для частицы алюминия размером 80 нм показывает элементарную ячейку ГЦК-решетки, изображенную на рис. 35 а, такую же, как и у объемного алюминия. Однако в некоторых случаях малые частицы с размерами < 5 нм могут иметь другую структуру. Интересно рассмотреть алюминиевый кластер из 13 атомов, так как это - магическое число. На рис. 35 б показаны три возможных расположения атомов в кластере. На основе критерия максимизации количества связей при минимизации объема, а также того факта, что в объеме структурой алюминия является ГЦК, можно ожидать, что структура такой наночастицы также будет ГЦК. Однако вычисления молекулярных орбиталей по методу функционалов плотности предсказывают, что наименьшую энергию имеет икосаэдрическая форма, то есть вероятно изменение структуры.

Рис. 35. Геометрическая структура. (а) - Элементарная ячейка объемного алюминия, (б) - Три возможных структуры кластера Аl13

Следует отметить, что структура изолированной наночастицы может отличаться от лиганд-стабилизированной структуры.

Кластеры разных размеров имеют разную электронную структуру и, соответственно, разные расстояния между уровнями. Средняя энергия будет определяться не столько химической природой атомов, сколько размером частицы.

Из-за того, что электронная структура наночастицы зависит от ее размеров, способность реагировать с другими веществами также должна зависеть от ее размеров. Этот факт имеет большое значение для проектирования катализаторов.

К множеству нанообъектов относятся сверхмалые частицы, состоящие из десятков, сотен или тысяч атомов. Свойства кластеров кардинально отличаются от свойств макроскопических объемов материалов того же состава. Из нанокластеров, как из крупных строительных блоков, можно целенаправленно конструировать новые материалы с заранее заданными свойствами и использовать их в каталитических реакциях, для разделения газовых смесей и хранения газов. Одним из примеров является Zn4O(BDC)3(DMF)8(C6H5Cl)4. Большой интерес представляют магнитные кластеры, состоящие из атомов переходных металлов, лантиноидов, актиноидов. Эти кластеры обладают собственным магнитным моментом, что позволяет управлять их свойствами с помощью внешнего магнитного поля. Примером является высокоспиновая металлоорганическая молекула Mn12O12(CH3COO)16(H2O)4. Эта изящная конструкция состоит из четырех ионов Мn4+со спином 3/2, расположенных в вершинах тетраэдра, восьми ионов Мn3+со спином 2, окружающих этот тетраэдр. Взаимодействие между ионами марганца осуществляется ионами кислорода. Антиферромагнитные взаимодействия спинов ионов Мn4+и Мn3+приводят к полному достаточно большому спину, равному 10. Ацетатные группы и молекулы воды отделяют кластеры Мn12друг от друга в молекулярном кристалле. Взаимодействие кластеров в кристалле чрезвычайно мало. Наномагниты представляют интерес при проектировании процессоров для квантовых компьютеров. Кроме того, при исследовании этой квантовой системы обнаружены явления бистабильности и гистерезиса. Если учесть, что расстояние между молекулами составляет около 10 нанометров, то плотность памяти в такой системе может быть порядка 10 гигабайт на квадратный сантиметр.

В последнее десятилетие развитие экспериментальных методов получения и изучения свойств нанокластеров и наноструктур привело к значительному прогрессу в этой области и созданию направления исследования физикохимии нанокластеров и нанокластерных систем.

Для синтеза нанокластеров и наноструктур применялись как традиционные методы химии твердого тела и твердотельные химические реакции, так и специальные методы матричного наноструктурирования с образованием кластеров в микропорах с помощью химических реакций. Методы второй группы позволяют переходить от изолированных (матричная изоляция) к взаимодействующим кластерам. В круг вопросов изучения нанокластеров и наносистем входили атомная нанокластерная динамика, магнитные свойства и магнитные фазовые переходы, каталитические свойства. При этом использовались теоретические методы: термодинамический подход к описанию магнитных фазовых переходов в наносистемах, учитывающий поверхностную энергию кластеров и межкластерные взаимодействия, и математическая модель нуклеации, в ходе твердотельной реакции учитывающая термодинамические аспекты зародышеобразования и роста кластеров. Методическую базу экспериментальных исследований составляли метод рэлеевского рассеяния мессбауэровского излучения для характеристики динамических свойств наносистем, методы мессбауэровской спектроскопии для определения размера кластера, методы мессбауэровской спектроскопии для исследования магнитных фазовых переходов и определения критических размеров кластеров, при которых происходит скачкообразное изменение магнитных свойств кластера, метод зонда для исследования ограниченной диффузии кластера в поре, позволяющий оценить потенциалы движения кластера, методы каталитического тестирования (на основе определения активности и селективности катализатора) свойств поверхности и объема нанометрических слоистых оксидов допированных ионами переходных металлов. В качестве объектов синтеза и исследования были выбраны нанокластеры и наносистемы на основе оксидов железа, а также полимерные нанокластерные системы, которые интересны не только в плане изучения и моделирования новых свойств, связанных с размерными эффектами и межкластерными взаимодействиями, но, что крайне важно, перспективны для создания новых магнитных материалов и катализаторов.

Формирование нанокластерной системы оксидов железа. Термодинамическая модель зарождения и роста кластеров.

Эффективный метод синтеза наносистем из твердотельных железооксидных кластеров основан на термическом разложении оксалата железа. Процесс разложения при температуре выше некоторой критической точки начинается с формирования активной реакционной среды, в которой происходит зарождение нанокластеров оксида железа. Этот процесс формирования кластеров можно сравнить с процессом образования зародышей в растворе или расплаве, заполняющем ограниченный объем. Ограничение имеет место, когда кластер образуется в замкнутой поре конечного объема или в результате диффузионного ограничения, которое не позволяет возмущению концентрации маточной среды, вызванному изменением размера кластера, продвинуться за время нуклеации на определенное расстояние. Именно это расстояние определяет размер окружающей кластер ячейки, за пределы которой компоненты маточной среды вовремя нуклеации проникнуть не могут. Для одного кластера в системе неконтактирующих наночастиц зависимость свободной энергии Гиббса от радиуса кластера.

Магнитные свойства наносистемы оксидов железа. Изменение межкластерного взаимодействия от «слабого» к «сильному» приводит к изменению магнитных свойств наносистемы. Эти изменения исследовались методом мессбауэровской спектроскопии. Для системы 1 (изолированные кластеры) характерно явление суперпарамагнетизма, проявляющегося в виде тепловых флуктуаций магнитного момента кластера как целого, что приводит к размыванию магнитной сверхтонкой структуры спектра. С момента образования системы 2 (взаимодействующие кластеры) появляется достаточно четко выраженная магнитная сверхтонкая структура с узким центральным парамагнитным дублетом. Такой же эффект наблюдался ранее для нанокластеров ферригидрита, изолированных в порах полисорба, а также в ядре железосодержащих белков ферритина и гемосидерина. Наблюдавшийся спектр мы объясняем, как результат наличия в системе нанокластеров магнитного фазового перехода первого рода, при котором намагниченность или магнитный порядок изменяются скачком. Скачкообразный переход может наблюдаться при изменении температуры в некоторой критической точке, а также при изменении размера кластера, когда осуществляется переход через критическое значение радиуса. Скачкообразные переходы в наносистеме, обусловленные сильным межкластерным взаимодействием, давлением и деформацией, наиболее полно наблюдаются для системы 2, состоящей из крупных, спекшихся кластеров (20-50 нм).