Идеальный газ в потенциальном силовом поле. Закон больцмана для распределения частиц во внешнем потенциальном поле

При выводе основного уравнения молекулярно-кинетической теории газов предполагается, что молекулы распределены по объему равномерно. Это возможно только при отсутствии внешних сил. На самом деле в земных условиях молекулы испытывают на себе действие поля тяжести, т. е. находятся во внешнем потенциальном поле. В результате действия двух факторов, поля тяжести и теплового движения, в газе устанавливается некоторое распределение молекул по высоте.

Найдем закон, описывающий зависимость давления газа от высоты над поверхностью земли. Известно, что гидростатическое давление жидкости на глубине h равно

где - плотность жидкости. Поскольку жидкости мало сжимаемы, можно считать их плотность практически независящей от глубины. Газы, в отличие от жидкостей, довольно легко сжимаемы, поэтому их плотность существенно зависит от высоты. Но и для газов можно пользоваться подобной формулой, если перепад высот небольшой. Предполагая, что высота h точки наблюдения от поверхности земли получила элементарное приращение dh, получим приращение давления

.

Из уравнения Клапейрона-Менделеева выразим плотность

.

, .

Интегрируя в предположении, что температура не зависит от высоты, получим так называемую барометрическую формулу :

,

где p 0 , p - давление у поверхности земли и на высоте h соответственно.

Аналогичная формула получается для зависимости концентрации молекул от высоты. Т.к. n~p, получаем, что

.

Показатель экспоненты можно представить в виде

,

где - потенциальная энергия молекулы в поле тяжести Земли. Используя это выражение, получим, что

.

Больцман показал, что эта формула является универсальной, описывающей распределение частиц по значениям потенциальной энергии в любом внешнем потенциальном поле. Это соотношение называют законом распределения Больцмана .

Средняя длина свободного пробега молекул.

Длина свободного пробега молекулы - это среднее расстояние (обозначаемое ), которое частица пролетает за время свободного пробега от одного столкновения до следующего.

Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.

Формула

Где - эффективное сечение молекулы, - концентрация молекул.

Явления переноса в газах.

  • Распространение молекул примеси в газе от источника называется диффузией .

В состоянии равновесия температура Т и концентрация n во всех точках системы одинакова. При отклонении плотности от равновесного значения в некоторой части системы возникает движение компонент вещества в направлениях, приводящих к выравниванию концентрации по всему объему системы. Связанный с этим движением перенос вещества обусловлен диффузией . Диффузионный поток будет пропорционален градиенту концентрации:



.
  • Если какое-либо тело движется в газе, то оно сталкивается с молекулами газа и сообщает им импульс. С другой стороны, тело тоже будет испытывать соударения со стороны молекул, и получать собственный импульс, но направленный в противоположную сторону. Газ ускоряется, тело тормозится, то есть на тело действуют силы трения. Такая же сила трения будет действовать и между двумя соседними слоями газа, движущимися с разными скоростями. Это явление носит название внутреннее трение или вязкость газа , причём сила трения пропорциональна градиенту скорости:
  • В состоянии равновесия в среде, содержащей заряженные частицы, потенциал электрического поля в каждой точке соответствует минимуму энергии системы. При наложении внешнего электрического поля возникает неравновесное движение электрических зарядов в таком направлении, чтобы минимизировать энергию системы в новых условиях. Связанный с этим движением перенос электрического заряда называется электропроводностью , а само направленное движение зарядов - электрическим током.

В процессе диффузии при теплопроводности и электропроводности происходит перенос вещества, а при внутреннем трении – перенос энергии. В основе этих явлений лежит один и тот же механизм – хаотическое движение молекул. Общность механизма, обуславливающего все эти явления переноса, приводит к тому, что их закономерности должны быть похожи друг на друга.

1. 4. Барометрическая формула.

При выводе основного уравнения молекулярно-кинетической теории предполагалось, что если на молекулы газа не действуют внешние силы, то молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул, с другой, приводят к некоторому стационарному состоянию газа, при котором концентрация молекул газа и его давление с высотой убывают. Выведем закон изменения давления газа с высотой, предполагая при этом, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте hравнор, то на высотеh+dhоно равно р +dp(рис.1.2). Приdh> 0,dр < 0, т.к. давление с высотой убывает. Разность давлений р и (р +dр) равна гидростатическому давлению столба газа авсd, заключенного в объеме цилиндра высотойdhи площадью с основанием равным единице. Это з апишется в следующем виде:p- (p+dp) =gρdh, -dp=gρdhилиdp= ‑gρdh, гдеρ– плотность газа на высотеh. Воспользуемся уравнением состояния идеального газа рV=mRT/Mи выразим плотностьρ=m/V=pM/RT. Подставим это выражение в формулу дляdр:

dp= -pMgdh/RTилиdp/p= -Mgdh/RT

Интегрирование данного уравнения дает следующий результат: Здесь С – константа и в данном случае удобно обозначить постоянную интегрирования черезlnC. Потенцируя полученное выражение, находим, что

При условии h=0 получим, что С=р 0 , где р 0 -давление на высотеh=0.

Д анное выражение называется барометрической формулой. Она позволяет найти атмосферное давление в зависимости от высоты, или высоту, если известно давление.

Зависимость давления от высоты демонстрирует рисунок 1.3. Прибор для определения высоты над уровнем моря называется высотомером или альтиметром. Он представляет собой барометр, проградуированный в значениях высоты.

1. 5. Закон Больцмана о распределении частиц во внешнем потенциальном поле. @

Если воспользоваться выражением р = nkT, то можно привести барометрическую формулу к виду:

з десьn– концентрация молекул на высотеh,n 0 – то же у поверхности Земли. Так как М =m 0 N A , гдеm 0 – масса одной молекулы, аR=kN A , то мы получим П =m 0 gh– это потенциальная энергия одной молекулы в поле тяготения. ПосколькуkT~‹ε пост ›, то концентрация молекул на определенной высоте зависит от соотношения П и ‹ε пост ›

Полученное выражение называется распределением Больцмана для внешнего потенциального поля. Из него следует, что при постоянной температуре плотность газа (с которой связана концентрация) больше там, где меньше потенциальная энергия его молекул.


1. 6. Распределение Максвелла молекул идеального газа по скоростям. @

При выводе основного уравнения молекулярно-кинетической теории отмечалось, что молекулы имеют различные скорости. В результате многократных соударений скорость каждой молекулы меняется со временем по модулю и по направлению. Из-за хаотичности теплового движения молекул все направления являются равновероятными, а средняя квадратичная скорость остается постоянной. Мы можем записать

П остоянство ‹υ кв › объясняется тем, что в газе устанавливается стационарное, не меняющееся со временем распределение молекул по скоростям, которое подчиняется определенному статистическому закону. Этот закон теоретически был выведен Д.К.Максвеллом. Он рассчитал функциюf(u), называемую функцией распределения молекул по скоростям. Если разбить диапазон всех возможных скоростей молекул на малые интервалы, равныеdu, то на каждый интервал скорости будет приходиться некоторое число молекулdN(u), имеющих скорость, заключенную в этом интервале (Рис.1.4.).

Функция f(v) определяет относительное число молекул, скорости которых лежат в интервале отu до u+ du. Это число - dN(u)/N= f(u)du.Применяя методы теории вероятностей, Максвелл нашел вид для функции f(u)

Д анное выражение - это закон о распределении молекул идеального газа по скоростям.Конкретный вид функции зависит от рода газа, массы его молекул и температуры (рис.1.5). Функция f(u)=0 при u=0 и достигает максимума при некотором значении u в, а затем асимптотически стремится к нулю. Кривая несимметрична относительно максимума. Относительное число молекул dN(u)/N, скорости которых лежат в интервале du и равное f(u)du, находится как площадь заштрихованной полоски основанием dv и высотой f(u), показанной на рис.1.4. Вся площадь, ограниченная кривой f(u) и осью абсцисс равна единице, потому что, если просуммировать все доли молекул, имеющих всевозможные значения скорости, то получается единица. Как показано на рис.1.5, с ростом температуры кривая распределения смещается вправо, т.е. растет число быстрых молекул, но площадь под кривой остается постоянной, т.к. N = const.

Скорость u в, при которой функция f(u) достигает максимума, называется наиболее вероятной скоростью. Из условия равенства нулю первой производной функцииf(v) ′ = 0 следует, что

Н а рисунке 1.4. отмечена еще одна характеристика – средняя арифметическая скорость молекулы. Она определяется по формуле:

Опыт, проведенный немецким физиком О.Штерном, экспериментально подтвердил справедливость распределения Максвелла (рисунок 1.5.). Прибор Штерна состоит из двух коаксиальных цилиндров. Вдоль оси внутреннего цилиндра со щелью проходит платиновая проволока, покрытая слоем серебра. Если пропустить по проволоке ток,она нагревается и серебро испаряется. Атомы серебра, вылетая через щель, попадают на внутреннюю поверхность второго цилиндра. Если прибор будет вращаться, то атомы серебра осядут не против щели, а сместятся от точки О на некоторое расстояние. Исследование количество осадка позволяет оценить распределение молекул по скоростям. Оказалось, что распределение соответствует максвелловскому.

Барометрическая формула. Распределение Больцмана

Основное уравнение молекулярно-кинетической теории связывает параметры состояния газа с характеристиками движения его молекул, т. е. устанавливает зависимость между давлением и объемом газа и кинетической энергией поступательного движения его молекул.

т 0 m o v - (- m o v ) = 2m o v .

За время Dt площадки DS достигнут только те молекулы, которые заключены в объеме цилиндра с основанием DS и высотой v Dt. Число этих молекул равно п DS v Dt(n - число молекул в единице объема). Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент "времени вдоль каждого из них движется 1/3 молекул, причем половина молекул движется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1/6 п DS vDt.. m o v 1/6 п DS vDt = 1/3 п m o v 2 DSDt

р = F/DS=P/(DSDt)=1/3 п m o v 2 (1),

(так как F=dP/dt).

Если газ в объеме V содержит N

(2)

р = 1/3 п m o v кв 2 (3)

Учитывая, что п = N/V, получим рV = 1/3 N m o v кв 2

или рV = 2/3 N (m o v кв 2 /2)= 2/3 E (4),

гдеЕ - суммарная кинетическая энергия поступательного движения всех молекул газа.

Выражение (4) (т.е. рV = 2/3E ) или эквивалентное ему (3) называется основным уравнением молекулярно-кинетической теории идеальных газов . Точный расчет с учетом движения молекул по всевозможным направлениям дает ту же формулу.

p = n kT, а с другой р = 1/3 п m o v

(5),

так как молярная масса m = m 0 N A , где т 0 - масса одной молекулы, N A - постоянная Авогадро, к = R/N A

Средняя кинетическая энергия поступательного движения одной молекулы идеального газа, используя, что p = n kT, и р = 1/3 п m o v кв 2 , равна

e = m o v кв 2 /2 =3/2kT

Т.е. она пропорциональна термодинамической температуре и зависит только от нее. Таким образом, термодинамическая температура является мерой средней кинетической энергии поступательного движения молекул идеального газа .

При выводе основного уравнения молекулярно-кинетической теории газов и максвелловского распределения молекул по скоростям предполагалось, что на молекулы газа внешние силы не действуют, поэтому молекулы равномерно распределены по объему. Однако молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул - с другой, приводят к некоторому стационарному состоянию газа, при котором давление газа с высотой убывает.

Выведем закон изменения давления с высотой, предполагая, что поле тяготения однородно, температура постоянна и масса всех молекул одинакова. Если атмосферное давление на высоте h равно р , то на высоте h + dh оно равно р + dp (при dh> Оdp < 0, так как давление с высотой убывает). Разность давлений р и р + dp равна весу газа, заключенного в объеме цилиндра высотой dh

р - (р + dp) = ρgdh,

h . Следовательно,

dp =- ρgdh. (1)

pV = m/mRT ,где m -масса газа, m -

r= m/V = pm/(RT).

Подставив в (1), получим

или

h, а давление на h p o .

(2),

так как m = m 0 N A , и R = kN A , где т o - масса одной молекулы, N A - постоянная Авогадро.

Выражение (2) называется барометрической формулой . Она позволяет найти атмосферное давление в зависимости от высоты (или, измерив давление, найти высоту). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяжелее газ.

Барометрическую формулу (2) можно преобразовать, если воспользоваться выражением р = пкТ:

(3)

Здесь n h , а n o - концентрация частиц на высоте h =0.

Из формулы (3) следует, что с понижением температуры число молекул на определенной высоте h убывает. При T =0 все молекулы оказались бы на поверхности земли. Сила тяжести стремиться опустить молекулу на землю, а тепловое движение разбрасывает их по высотам, поэтому распределение молекул в атмосфере с высотой определяется балансом этих тенденций.

Если учесть, что m o gh = П

(4)

Выражение (4) называется распределением Больцмана во внешнем потенциальном поле

Если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределение Больцмана (4) справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.

БАРОМЕТРИЧЕСКАЯ ФОРМУЛА. РАСПРЕДЕЛЕНИЕ БОЛЬЦМАНА

Барометрическая формула - зависимость давления или плотности газа от высоты в поле силы тяжести.

Для идеального газа, имеющего постоянную температуру и находящегося в однородном поле тяжести (во всех точках его объёма ускорение свободного падения одинаково), барометрическая формула имеет следующий вид:

где - давление газа в слое, расположенном на высоте , - давление на нулевом уровне (), - молярная масса газа, - универсальная газовая постоянная, - абсолютная температура. Из барометрической формулы следует, что концентрация молекул (или плотность газа) убывает с высотой по тому же закону:

где - масса молекулы газа, - постоянная Больцмана.

Барометрическая формула может быть получена из закона распределения молекул идеального газа по скоростям и координатам в потенциальном силовом поле (см. Статистика Максвелла - Больцмана). При этом должны выполняться два условия: постоянство температуры газа и однородность силового поля. Аналогичные условия могут выполняться и для мельчайших твёрдых частичек, взвешенных в жидкости или газе. Основываясь на этом, французский физик Ж. Перрен в 1908 году применил барометрическую формулу к распределению по высоте частичек эмульсии, что позволило ему непосредственно определить значение постоянной Больцмана.

Барометрическая формула показывает, что плотность газа уменьшается с высотой по экспоненциальному закону. Величина , определяющая быстроту спада плотности, представляет собой отношение потенциальной энергии частиц к их средней кинетической энергии, пропорциональной . Чем выше температура , тем медленнее убывает плотность с высотой. С другой стороны, возрастание силы тяжести (при неизменной температуре) приводит к значительно большему уплотнению нижних слоев и увеличению перепада (градиента) плотности. Действующая на частицы сила тяжести может изменяться за счёт двух величин: ускорения и массы частиц .

Следовательно, в смеси газов, находящейся в поле тяжести, молекулы различной массы по-разному распределяются по высоте.

Реальное распределение давления и плотности воздуха в земной атмосфере не следует барометрической формуле, так как в пределах атмосферы температура и ускорение свободного падения меняются с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

Барометрическая формула лежит в основе барометрического нивелирования - метода определения разности высот между двумя точками по измеряемому в этих точках давлению ( и ). Поскольку атмосферное давление зависит от погоды, интервал времени между измерениями должен быть возможно меньшим, а пункты измерения располагаться не слишком далеко друг от друга. Барометрическая формула записывается в этом случае в виде: (в м), где - средняя температура слоя воздуха между точками измерения, - температурный коэффициент объёмного расширения воздуха. Погрешность при расчётах по этой формуле не превышает 0,1-0,5 % от измеряемой высоты. Более точна формула Лапласа, учитывающая влияние влажности воздуха и изменение ускорения свободного падения.

В присутствии гравитационного поля (или, в общем случае, любого потенциального поля) на молекулы газа действует сила тяжести. В результате, концентрация молекул газа оказывается зависящей от высоты в соответствии с законом распределения Больцмана:

n = n0exp(-mgh / kT)

где n - концентрация молекул на высоте h, n0 - концентрация молекул на начальном уровне h = 0, m - масса частиц, g - ускорение свободного падения, k - постоянная Больцмана, T - температура.

Барометрическая формула. Распределение Больцмана.

Основное уравнение молекулярно-кинœетической теории связывает параметры состояния газа с характеристиками движения его молекул, т. е. устанавливает зависимость между давлением и объёмом газа и кинœетической энергией поступательного движения его молекул.

Для вывода уравнения рассмотрим одноатомный идеальный газ. Предположим, что молекулы газа движутся хаотически с одной и той же скоростью v, число взаимных столкновений между молекулами газа пренебрежимо мало по сравнению с числом ударов о стенки сосуда, соударения молекул со стенками сосуда абсолютно упругие. Выделим на стенке сосуда некоторую элементарную площадку DS (рис. 1) и вычислим давление, оказываемое на эту площадку. При каждом соударении молекула массой т 0 передает стенке сосуда импульс m o v - (- m o v ) = 2m o v .

За время Dt площадки DS достигнут только те молекулы, которые заключены в объёме цилиндра с основанием DS и высотой v Dt. Число этих молекул равно п DS v Dt(n - число молекул в единице объёма). Для упрощения расчетов хаотическое движение молекул заменяют движением вдоль трех взаимно перпендикулярных направлений, так что в любой момент "времени вдоль каждого из них движется 1/3 молекул, причем половина молекул движется вдоль данного направления в одну сторону, половина - в противоположную. Тогда число ударов молекул, движущихся в заданном направлении, о площадку DS будет 1/6 п DS vDt.. При столкновении с площадкой эти молекулы передадут ей импульс P=2m o v 1/6 п DS vDt = 1/3 п m o v 2 DSDt

Тогда давление газа, оказываемое им на стенку сосуда,

р = F/DS=P/(DSDt)=1/3 п m o v 2 (1),

(так как F=dP/dt).

В случае если газ в объёме V содержит N молекул, движущихся с разными скоростями, то можно рассматривать среднюю квадратичную скорость, характеризующую всю совокупность молекул газа.

(2)

Уравнение (1) с учетом (2) примет вид

р = 1/3 п m o v кв 2 (3)

Учитывая, что п = N/V, получим рV = 1/3 N m o v кв 2

или рV = 2/3 N (m o v кв 2 /2)= 2/3 E (4),

гдеЕ - суммарная кинœетическая энергия поступательного движения всœех молекул газа.

Выражение (4) (ᴛ.ᴇ. рV = 2/3E ) или эквивалентное ему (3) принято называть основным уравнением молекулярно-кинœетической теории идеальных газов . Точный расчет с учетом движения молекул по всœевозможным направлениям дает ту же формулу.

Учитывая, что с одной стороны p = n kT, а с другой р = 1/3 п m o v кв 2 , получим выражение для средней квадратичной скорости

(5),

так как молярная масса m = m 0 N A , где т 0 - масса одной молекулы, N A - постоянная Авогадро, к = R/N A . Отсюда легко найти, что при комнатной температуре молекулы кислорода имеют среднюю квадратичную скорость 480 м/с.

Средняя кинœетическая энергия поступательного движения одной молекулы идеального газа, используя, что p = n kT, и р = 1/3 п m o v кв 2 , равна

e = m o v кв 2 /2 =3/2kT

Т.е. она пропорциональна термодинамической температуре и зависит только от нее. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, термодинамическая температура является мерой средней кинœетической энергии поступательного движения молекул идеального газа .

При выводе основного уравнения молекулярно-кинœетической теории газов и максвелловскогораспределœения молекул по скоростям предполагалось, что на молекулы газа внешние силы не действуют, в связи с этим молекулы равномерно распределœены по объёму. При этом молекулы любого газа находятся в потенциальном поле тяготения Земли. Тяготение, с одной стороны, и тепловое движение молекул - с другой, приводят к некоторому стационарному состоянию газа, при котором давление газа с высотой убывает.

Выведем закон изменения давления с высотой, предполагая, что поле тяготения однородно, температура постоянна и масса всœех молекул одинакова. В случае если атмосферное давление на высоте h равно р , то на высоте h + dh оно равно р + dp (при dh> Оdp < 0, так как давление с высотой убывает). Разность давлений р и р + dp равна весу газа, заключенного в объёме цилиндра высотой dh с основанием площадью, равной единице площади:

р - (р + dp) = ρgdh,

где ρ - плотность газа на высоте h . Следовательно,

dp =- ρgdh. (1)

Воспользовавшись уравнением состояния идеального газа pV = m/mRT ,где m -масса газа, m - молярная масса газа), находим, что плотность газа равна

r= m/V = pm/(RT).

Подставив в (1), получим

или

Проинтегрируем это уравнение с учетом того, что р - давление на высоте h, а давление на h =0 (на поверхности земли) равноp o .

(2),

так как m = m 0 N A , и R = kN A , где т o - масса одной молекулы, N A - постоянная Авогадро.

Выражение (2) принято называть барометрической формулой . Она позволяет найти атмосферное давление исходя из высоты (или, измерив давление, найти высоту). Из этой формулы следует, что давление с высотой убывает тем быстрее, чем тяжелœее газ.

Барометрическую формулу (2) можно преобразовать, в случае если воспользоваться выражением р = пкТ:

(3)

Здесь n - концентрация частиц на высоте h , а n o - концентрация частиц на высоте h =0.

Из формулы (3) следует, что с понижением температуры число молекул на определœенной высоте h убывает. При T =0 всœе молекулы оказались бы на поверхности земли. Сила тяжести стремиться опустить молекулу на землю, а тепловое движение разбрасывает их по высотам, в связи с этим распределœение молекул в атмосфере с высотой определяется балансом этих тенденций.

В случае если учесть, что m o gh = П - потенциальная энергия молекулы в поле тяготения то формулу можно переписать.

(4)

Выражение (4) принято называть распределœением Больцмана во внешнем потенциальном поле . Из него следует, что при постоянной температуре плотность газа больше там, где меньше потенциальная энергия его молекул.

В случае если частицы имеют одинаковую массу и находятся в состоянии хаотического теплового движения, то распределœение Больцмана (4) справедливо в любом внешнем потенциальном поле, а не только в поле сил тяжести.

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT , падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT , заменим P и P 0 в барометрической формуле (2.4.1) на n и n 0 и получим распределение Больцмана для молярной массы газа:

С уменьшением температуры число молекул на высотах, отличных от нуля, убывает. При T = 0 тепловое движение прекращается, все молекулы расположились бы на земной поверхности. При высоких температурах, наоборот, молекулы оказываются распределёнными по высоте почти равномерно, а плотность молекул медленно убывает с высотой. Так как mgh – это потенциальная энергия U , то на разных высотах U = mgh – различна. Следовательно, (2.5.2) характеризует распределение частиц по значениям потенциальной энергии:

Больцман доказал, что соотношение (2.5.3) справедливо не только в потенциальном поле сил гравитации, но и в любом потенциальном поле, для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

Найдем закон изменения давления газа в зависимости от высоты над уровнем моря, полагая, что газ идеальный, темпера­тура его постоянна и не изменяется с высотой, ускорение свобод­ного падения не зависит от высоты. Последние два предположе­ния справедливы при относительно небольших изменениях высоты.

Выделим мысленно, на высоте Н над уровнем моря ци­линдрический слой, высота которого dh , а основание равно S (рис. 8).

где = m 0 gn S h - сила притяжения молекул объема S h к Земле;

= p S - сила давле­ния на высоте h ;

= (р + dp ) S - сила давления на высоте h + dh .

Все силы направлены по одной прямой, поэтому

F T + F 2 F 1 = 0.

сокращая на S

и учитывая, что
, получим


Разделяя переменные и принимая во внимание, что = const .


(1.2)



- Барометрическая формула (1.2)



;

т.к.
, то


На основе барометрической формулы разработаны приборы- алтиметры- приборы для определения высоты.

    1. Закон Больцмана

Пользуясь барометрической формулой

Учитывая, что

р = nkT,

р 0 = n 0 kT,

где п и п 0 - концентрации молекул соответственно на высоте h и h 0



(1. 2 )

Полученное распределение Больцмана справедливо для по­ля тяготения. Однако оно справедливо и для газа, находящегося в любом дру­гом потенциальном поле. При этом величина m 0 gh заменяется на W П - потенциальную энергию молекулы в произвольном силовом поле.


(1. 2 )

Если kT  W п , имеет место почти равномерное распределение частиц по энергиям (распределение Максвела ).

При kT  W п , n n 0 , т.е. имеет место резкое изменение концентрации молекул в силовом поле: число молекул с небольшими энергиями (на низких энергетических уровнях) значительно превышает число молекул на более высоких энергетических уровнях.

Распределение Больцмана, описываемое функцией (1.37) называется нормальным распределением. В 1905 г. Эйнштейн предсказал существование систем с инверсной заселенностью энергетических уровней. В 1960 г впервые такое распределение использовано практически- в лазерах.

Для характеристики инверсных систем в физике ввели понятие Т 0.

Распределение Максвелла-Больцмана, описывающие распределение молекул по скоростям в силовом поле.


(1.2)

  1. Основы термодинамики

    1. Общие понятия термодинамики

Термодинамика – раздел физики, в котором изучаются физические превращения различных видов энергии, теплоты и работы. (Теория тепловых явлений, в которой не учитывается атомно-молекулярное строение тел).

Совокупность макроскопических тел, которые взаимодействуют и обмениваются энергией как между собой, так и с другими телами называется термодинамической системой .

Если взаимодействие с телами не входящими в систему отсутствует, то система называется изолированной.

Совокупность физических величин, характеризующих свойства термодинамической системы, называется термодинамическими параметрами .

Любые изменения, происходящие в термодинамической системе, называют термодинамическим процессом .

Произвольная термодинамическая система обладает полной энергией Е, складывающейся из:

а) кинетической энергии Е к механического движения системы как целого;

б) потенциальной энергии системы Е п во внешних силовых полях (гравитационном, электромагнитном);

в) внутренней энергии U . Внутренняя энергия макроскопического тела равна сумме потенциальных энергий взаимодействия частиц, составляющих тело, и кинетических энергий их беспорядочного теплового движения.

Е = Е к + Е п + U

В термодинамике внутренняя энергия U определяется как однозначная функция его макроскопических параметров, например Т и V , т.е. в каждом состоянии система обладает вполне определенной внутренней энергией.

При переходе системы из одного состояния в другое изменение внутренней энергии определяется только разностью значений внутренних энергий в этих состояниях и не зависит от пути перехода.

Заменив в Барометрической формуле p через nkT получим закон изменения концентрации газа с высотой:

Где n 0 – концентрация газа на высоте h=0

Преобразуем, заменив M/R равным ему отношению m 0 /k

Где m 0 - масса одной молекулы, k – постоянная Больцмана

С уменьшением температуры концентрации газа на высотах отличных от нуля, убывает, обращаясь в ноль при температуре T=0

При абсолютном нуле все молекулы воздуха расположились бы на земной поверхности.

При больших температурах наоборот концентрация слабо уменьшается с высотой.

Распределение молекул газа получается в результате действия двух «конкурирующих» тенденций: 1. притяжение к земле, 2. тепловое движение

На разной высоте молекула обладает разной потенциальной энергией => распределение молекул газа по высоте, является в тоже время распределением их по значениям потенциальной энергии.

Таким образом получаем:

Из этого => что молекулы располагаются с большей концентрацией (плотностью) тела, где их потенциальная энергия меньше, и наоборот, с меньшей плотностью в местах, где их потенциальная энергия больше.

Среднее число столкновений и средняя длина свободного пробега молекул .

Молекулы газа, находясь в состоянии хаотического движения, непрерывно сталкиваются друг с другом. Между двумя последовательными столкновениями молекулы проходят некоторый путь l, который называется длиной свободного пробега. В общем случае длина пути между последовательными столкновениями различна, но так как мы имеем дело с огромным числом молекул и они находятся в беспорядочном движении, то можно говорить о средней длине свободного пробега молекул .

Минимальное расстояние, на которое сближаются при столкновении центры двух молекул, называется эффективным диаметром молекулы d (рис. 68). Он зависит от скорости сталкивающихся молекул, т. е. от температуры газа (несколько уменьшается с ростом температуры).

Так как за 1 с молекула проходит в среднем путь, равный средней арифметической скорости , и если - среднее число столкновений, испытываемых одной молекулой газа за 1 с, то средняя длина свободного пробега

Для определения представим себе молекулу в виде шарика диаметром d, которая движется среди других «застывших» молекул. Эта молекула столкнется только с теми молекулами, центры которых находятся на расстояниях, равных или меньших d, т. е. лежат внутри «ломаного» цилиндра радиусом d (рис. 69).

Среднее число столкновений за 1 с равно числу молекул в объеме «ломаного» цилиндра:

где n - концентрация молекул, V = pd2 - средняя скорость молекулы или путь, пройденным ею за 1 с). Таким образом, среднее число столкновений

Расчеты показывают, что при учете движения других молекул

Распределение Больцмана для частиц во внешнем потенциальном поле

Газ, на который не действует внешнее силовое поле, равно­мерно заполняет объем, в котором он находится, благодаря хаотичности теплового движения молекул. Если на молекулы газа действуют внешние силы, то концентрация газа не будет одинаковой во всех точках объема. Рассмотрим в качестве примера атмосферный газ, находящийся в поле земного тяго­тения. Если бы отсутствовало тепловое движение, то все мо­лекулы атмосферы опустились бы на поверхность Земли под действием сил тяжести и земная атмосфера не могла бы суще­ствовать. Однако этому препятствует хаотическое движение молекул, которое способствует обратному процессу - стремле­нию атмосферного газа рассеяться и заполнить равномерно всю Вселенную. Следовательно, атмосфера Земли может существовать за счет этих двух факторов в некотором равновесном состоянии, при котором ее плотность, концентрация молекул и давление будут зависеть от пространственных ко­ординат.

Найдем закон измене­ния этих величин в зависимости от высоты над поверхностью Земли. Бу­дем считать, что газ на­ходится в состоянии термодинамического равно­весия и его температура всюду одинакова. Выделим некоторый столб газа, имеющий форму цилиндра, площадью поперечного сече­ния s, и направим ось z вдоль столба по направлению от поверхности Земли. Установим начало отсчета координаты z на поверхности Земли (рис. 19.3).

Выделим на высоте z элементарный слой столба газа тол­щиной dz и воспользуемся тем, что этот слой, как и весь столб, находится в состоянии механического равновесия. Это значит, что равнодействующая всех сил, действующих на слой, равна нулю. Из рис. 19.3 видно, что равнодействующая складыва­ется из трех сил: две силы давления F H и F B , действующие на нижнее и верхнее основание слоя, и сила тяжести dP самого слоя. Обозначим давление газа в точках нижнего основания p , а в точках верхнего основания р+ dp. Тогда

F H = pS ; F B = (p + dp)S; dP = ρgSdz,

где ρ - плотность слоя воздуха.

С учетом направления сил условие равновесия слоя запишется в виде

F B + dP = F H (18.28)

+ dp) S + ρgSdz = pS. (18.29)

Раскрыв в (18.29) скобки, получим дифференциальное уравнение

dp = - ρgdz. (18.30)

Из уравнения Клапейрона - Менделеева следует, что плотность газа связана с давлением формулой

где т а - масса молекулы газа.

Используя (18.31), преобразуем дифференциальное урав­нение (18.30) к виду

. (18.32)

Интегрируя это уравнение по высоте от 0 до z, получаем

, (18.33)

где ln p 0 - постоянная интегрирования.

Потенциируя (18.33), имеем

Из (18.34) видно, что р 0 имеет смысл давления атмосферы на поверхности Земли, где z = 0.

Полученное уравнение определяет зависимость давления атмосферы вблизи Земли от высоты над уровнем моря. Как и следовало ожидать, при увеличении высоты давление уменьшается. В соответствии с формулой (18.34), которая называется барометрической, это уменьшение подчиняется экспоненциальному закону. Измеряя давление по барометру, проградуированному в соответствии с барометрической фор­мулой, можно определить высоту объекта над поверхностью Земли. Такой прибор называется альтиметром и широко при­меняется в авиации.

Используя барометрическую формулу, легко установить закон распределения концентрации молекул по высоте h над поверхностью Земли. С этой целью воспользуемся уравнени­ем состояния идеального газа p= nkT. В этой формуле дав­ление р и концентрация молекул п зависят от высоты, в то время как температура Т постоянная в соответствии с пред­положением, что газ находится в состоянии термодинамиче­ского равновесия. Из уравнения состояния и барометрической формулы для концентрации п на высоте h вытекает:

, (18.35)

где n 0 - концентрация молекул воздуха при h = 0.

Обратив внимание на то, что в показатель экспоненты в правой части (18.35) входит потенциальная энергия моле­кулы в поле силы тяжести W ПОТ = m a gh, перепишем (18.35) в виде

. (18.36)

Оказывается, что выражение (18.36) для распределения молекул имеет общий характер и справедливо для частиц, находящихся во внешнем потенциальном поле любого вида. Это распределение называется распределением Больцмана.

В распределении Больцмана (18.36) под n 0 следует пони­мать концентрацию молекул в точке поля, где их потенциаль­ная энергия равна нулю, W ПОТ = 0, а п представляет собой концентрацию молекул в точке, где их потенциальная энергия равна W ПОТ.

Как известно, плотность газа ρ прямо пропорциональна концентрации молекул п. Поэтому, используя (18.35), нетруд­но показать, что распределение плотности воздуха в атмо­сфере Земли будет описываться выражением:

, (18.37)

где М - молярная масса газа.

Из (18.34), (18.35) и (18.37) следует, что в атмосфере Земли р, п и ρ воздуха уменьшаются единообразно с увели­чением высоты.

Учитывая, что концентрация п по определению равна , где dN - число молекул в элементарном объеме dV , можно представить распределение Больцмана в форме