Тиосульфат натрия плюс серная кислота наблюдения. Тиосерная кислота и тиосульфаты

К эфирам серной кислоты относятся диалкилсульфаты (RO 2)SO 2 . Это высококипящие жидкости; низшие растворимы в воде; в присутствии щелочей образуют спирт и соли серной кис­лоты. Низшие диалкилсульфаты - алкилирующие агенты.

Диэтилсульфат (C 2 H 5) 2 SO 4 . Температура плавления -26°С, температура кипения 210°С, растворим в спиртах, нерастворим в воде. Получен взаимодействием серной кислоты с этанолом. Яв­ляется этилирующим агентом в органическом синтезе. Проника­ет через кожу.

Диметилсульфат (CH 3) 2 SO 4 . Температура плавления -26,8°С, температура кипения 188,5°С. Растворим в спиртах, плохо - в воде. Реагирует с аммиаком в отсутствие раствори­теля (со взрывом); сульфирует некоторые ароматические со­единения, например эфиры фенолов. Получают взаимодейст­вием 60%-ного олеума с метанолом при 150°С, Является метилирующим агентом в органическом синтезе. Канцероген, поражает глаза, кожу, органы дыхания.

Тиосульфат натрия Na 2 S 2 O 3

Соль тиосерной кислоты, в которой два атома серы имеют различные степени окисления: +6 и -2. Кристаллическое вещест­во, хорошо растворимо в воде. Выпускается в виде кристаллогид­рата Na 2 S 2 O 3 5Н 2 O, в обиходе называемый гипосульфитом. По­лучают взаимодействием сульфита натрия с серой при кипячении:

Na 2 SO 3 +S=Na 2 S 2 O 3

Как и тиосерная кислота, является сильным восстановителем, Легко окисляется хлором до серной кислоты:

Na 2 S 2 O 3 +4Сl 2 +5Н 2 О=2H 2 SO 4 +2NaCl+6НСl

На этой реакции было основано применение тиосульфата натрия для поглощения хлора (в первых противогазах).

Несколько иначе происходит окисление тиосульфата натрия слабыми окислителями. При этом образуются соли тетратионовой кислоты, например:

2Na 2 S 2 O 3 +I 2 =Na 2 S 4 O 6 +2NaI

Тиосульфат натрия является побочным продуктом в произ­водстве NaHSO 3 , сернистых красителей, при очистке промыш­ленных газов от серы. Применяется для удаления следов хлора после отбеливания тканей, Для извлечения серебра из руд; явля­ется фиксажем в фотографии, реактивом в иодометрии, противоядием при отравлении соединениями мышьяка, ртути, противо­воспалительным средством.

1. Влияние концентрации на скорость реакции тиосульфата натрия с серной кислотой . В три пробирки налейте 0,1 н. раствор тиосульфата натрия: в первую – 5 мл, во вторую – 10 мл и третью – 15 мл. После этого в первую пробирку добавьте 10 мл, а во вторую – 5 мл дистиллированной воды. Затем в три другие пробирки налейте по 5 мл 0,1 н. раствора серной кислоты. Слейте попарно приготовленные растворы, в результате чего произойдет реакция

Na 2 S 2 O 3 +H 2 SO 4 =Na 2 SO 4 +SO 2 +H 2 O+S

С помощью секундомера отметьте, через какое время появляется сера в каждой пробирке. Результаты запишите в следующую таблицу:

Таблица 9.1

Какой вывод можно сделать из полученных данных?

2. Зависимость скорости реакции от температуры . Влияние температуры на скорость реакции взаимодействия тиосульфата натрия с серной кислотой. Приготовьте шесть одинаковых стаканов. В три стакана налейте по 15 мл 0,1 н. раствора тиосульфата натрия, а в другие три стакана – по 15 мл 0,1 н. раствора серной кислоты. Нагрейте на водяной бане одну пару стаканов с растворами тиосульфата натрия и серной кислоты до температуры на 10°С выше, а другую пару стаканов на 20°С выше комнатной в течение 15–20 мин, контролируя температуру воды термометром. Пока растворы нагреваются, слейте оставшиеся растворы тиосульфата натрия и серной кислоты при комнатной температуре. Отметьте время появления серы в стаканах. То же проделайте и с подогретыми растворами. Полученные данные запишите в таблицу:

Таблица 9.2

Какие выводы можно сделать относительно влияния температуры на скорость реакции из полученных результатов?

3. Изучение скорости реакции разложения перекиси водорода . Перекись водорода самопроизвольно медленно разлагается в соответствии с уравнением: Н 2 О 2 =Н 2 О+1/2О 2 . Скорость этого процесса можно увеличить введением катализатора и оценивать количеством выделенного кислорода за определенный промежуток времени. Опыт проводится в приборе, изображенном на рис. 2. Налейте через воронку в бюретку воды приблизительно до нулевого деления, плотно закройте отверстие бюретки пробкой со стеклянной трубкой. В одно колено сосуда Ландольта налейте с помощью воронки 1 мл раствора хлорида железа III – катализатор. В другое колено с помощью воронки налейте перекись водорода заданной преподавателем концентрации. Затем соедините сосуд Ландольта с бюреткой при помощи пробки с газоотводной трубкой. Проверьте герметичность прибора. Поместите сосуд Ландольта в термостат с заданной температурой и выдержите 10–15 мин. Установите одинаковый уровень воды в уравнительной воронке и бюретке, запишите величину уровня. Наклоняя сосуд Ландольта, приведите перекись водорода в контакт с катализатором. Через каждые 1–2 мин в течении 30 мин измеряйте объем выделенного кислорода V τ . Результаты измерений запишите в табл. 9.3.

Таблица 9.3

После полного разложения перекиси водорода сосуд Ландольта охладите до начальной температуры термостата, и вновь измерьте объем полностью выделенного кислорода V ∞ . По данным табл. 9.3 и по формуле

произведите расчет константы скорости реакции. Построить график зависимости:

Определите по тангенсу угла наклона прямой к оси абсцисс константу скорости реакции и сравните со среднеарифметическим значением (9.17). Целесообразно проводить опыты при двух температурах: 15–25°С и 30–40°С.

По значениям константы скорости реакции для двух температур по формуле:

где R=8,314 Дж/моль∙К, рассчитайте энергию активации реакции разложения перекиси водорода.

4. Влияние концентрации реагентов на химическое равновесие . При взаимодействии раствора хлорида железа (III) с роданидом калия образуются растворимые вещества и изменяется окраска растворов. Реакция обратимая:

FeCl 3 +3KCNS Fe(CNS) 3 +3KCl

Записать в таблице цвета растворов всех веществ системы:

Таблица 9.4.

Смешать в пробирке по 5 мл растворов хлорида железа (III) и роданида калия. Отметить окраску полученного раствора. Указать вещество, сообщившее окраску системе. Разлить полученный раствор в четыре пробирки по возможности равными частями. В первую пробирку добавить немного концентрированного раствора хлорного железа, во вторую – раствора роданида калия, в третью – немного кристаллического хлорида калия. Четвертую пробирку оставить для сравнения. Сравнить окраску растворов в пробирках и укажите, в каком направлении сместилось равновесие при добавлении FeCl 3 , KSCN и KCl. Составить уравнение для константы равновесия изученной реакции.

5. Влияние изменения температуры на химическое равновесие . При действии иода на крахмал образуется непрочное соединение сложного состава, окрашенное в синий цвет. Равновесие системы можно условно изобразить следующим уравнением:

Крахмал + иод иодокрахмальный комплекс

Налить в пробирку 2-3 мл раствора крахмала и добавить несколько капель иодной воды до появления синей окраски раствора. Нагреть пробирку до посветления раствора, а затем охладить до возвращения синей окраски. Определить какая реакция (прямая или обратная) является экзотермической, какая эндотермической. Объяснить изменение цвета при нагревании и охлаждении.

Описание продукта

Гипосульфит натрия внешне выгледит в виде бесцветных кристаллов, которые хорошо растворяются в воде. Он широко применяется в промышленности и медицине. Считается сильным восстановителем.
Гипосульфиты (тиосульфаты) неустойчивы, поэтому в природе не встречаются.

Химическая формула : Na2S2O3 или Na2SO3S
Синонимы : тиосульфа́т на́трия, антихлор, сульфидотриоксосульфат натрия, натрий серноватистокислый.

Применение гипосульфата (тиосульфата) натрия.

Его применяют, чтобы удалить следы хлора после отбеливания тканей, для быстрого извлечения серебра из руд, фиксажа в фотографии, в качестве реактива в иодометрии, противоядия при отравлениях токсичной ртутью, а также другими тяжёлыми металлами, цианидами.

В годы первой мировой войны гипосульфитом пропитывали марлевые повязки и фильтры противогазов для защиты органов дыхания от ядовитого хлора. Его же используют в качестве реактива в аналитической и органической химии, им нейтрализуют сильные кислоты, обезвреживают тяжелые металлы и их токсические соединения. Реакции взаимодействия тиосульфата с различными веществами являются основой йодометрии и бромометрии.

В медицине гипосульфит натрия используется для дезинфекции кишечника, лечения чесотки, в качестве противовоспалительного и противоожогового средства. Также используется как оптимальная среда для определения молекулярных весов по понижению точки замерзания.

В пищевой промышленности гипосульфит натрия зарегистрирован в качестве пищевой добавки E539. Особенно часто его применяют в пекарском производстве. Гипосульфит натрия делает тесто более пластичным, а хлеб становится более рыхлым и объемным. На поверхности изделия не формируются трещины, а выпечка приобретает более привлекательный внешний вид. Количество ввода в состав зависит от вида хлеба и составляет от 0,001 до 0,002 процента от общего веса муки.

В фотографии использование гипосульфита (тиосульфата) натрия в качестве фиксажа основана на способности тиосульфат-иона переводить нерастворимые в воде светочувствительные ионы серебра в растворимые несветочувствительные комплексы.
Фиксажи условно делятся на нейтральные, кислые, дубящие и быстрые.
Нейтральный фиксаж представляет собой раствор тиосульфата натрия в воде. Для упрочнения эмульсионного слоя фотографии используют дубящие фиксажи. В качестве дубящих
веществ в разных рецептурах могут использоваться тетраборат натрия, борная кислота, хромокалиевые или алюмокалиевые квасцы и формалин.

В кожевенном производстве свойство дубящих фиксажей с успехом применяют при выделке кожевенно-мехового полуфабриката на этапе дубления. Такое дубление называют серным. Гипосульфит под воздействием добавляемой в состав раствора кислоты выделяет серу, которая обволакивает коллагеновую структуру волокон в толще шкуры. В результате мездра получается мягкой и пластичной. Шкуры выдубленные с помощью гиросульфта (тиосульфата) натрия, не уступают по качеству изделиям, выделанным алюминием или хромом.

В текстильной промышленности гипосульфит применяют для удаления следов хлора после отбеливания тканей.

Технические характеристики

Массовая доля, %

Гипосульфит натрия (фото)

Гипосульфит натрия (технический)

Тиосульфата натрия (Na 2 S 2 O 3 · 5H 2 O), мин. 99,0 98,5
нерастворимых в воде веществ, макс. 0,01 0,03
железа (Fe), макс. 0,001 0,002
сернистого натрия (Na 2 S), макс. 0,001 0,001
кальция, магния и веществ, нерастворимых в аммониевых растворах, макс. 0,02 не норм.
тяжелых металлов (Pb), макс. 0,001 не норм.
pH водного раствора при 20 о С, макс. 6,5-9,5 не норм.
внешний вид водного раствора бесцветный, прозрачный. не норм.

Где купить гипосульфит (тиосульфат) натрия?

Гипосульфит натрия (тиосульфат натрия) в фасовках 100г., 250г., 500г., 1кг. продается в Новосибирске в интернет магазине "Для дела". В рабочие часы забрать его можно самовывозом или воспользоваться услугами курьера. Для покупателей из других регионов эта продукция отправляется Почтой РФ или транспортными компаниями.

Тема: СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ И

ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Зависимость скорости реакции от температуры

(проверка правила Вант-Гоффа)

Закономерность изучается на примере взаимодействия тиосульфата натрия с серной кислотой

Реакция протекает в две стадии:

Первая стадия - ионный обмен - происходит мгновенно, так что фактически наблюдение ведётся за скоростью второй мономолекулярной стадии, признаком протекания которой является появления мути как результат образования элементарной серы. Поэтому концентрации серной кислоты фактически не сказывается на скорости реакции, лишь бы она была взята в количестве, достаточном для полного взаимодействия тиосульфата, и во всех опытах одинакова.

Следовательно, уравнение скорости может быть записано так:

Опыт 1 . Приготовить простейший термостат: стакан на 200 мл с крышкой, в которой имеются 3 отверстия. В первое отверстие опустить закрепленный на нитке термометр, во второе - коническую пробирку с -2н раствором Н 2 SO 4 с опущенной в неё пипеткой, в третье - коническую пробирку, в которую чистой пипеткой внести 10 капель 0,1-н раствора тиосульфата натрия. Стакан заполнить выдержанной при комнатной температуре водой настолько, чтобы шарик термометра и раствора были в неё погружены. Ртутный шарик термометра и растворы реагирующих веществ должны находиться на одном уровне в средней части воды, заполняющей стакан - термостат.

Выждав 5 минут – время, необходимое для выравнивания температуры воды в термостате и растворов в пробирках, записать показания термометра. Не вынимая пробирки из термостата, к раствору тиосульфата натрия добавить пипеткой 1 каплю раствора серной кислоты. В этот момент включить секундомер (замерить время по часам с секундной стрелкой), не вынимая пробирку из термостата, наблюдать за ходом опыта до появления в пробирке заметного на глаз помутнения и при обнаружении его выключить секундомер. Записать длительность опыта в секундах.

Опыт 2. Проводится при температуре, повышенной на 10°. Для этого пробирку в термостате, в которой проводился опыт, заменить чистой и вновь внести в неё 10 капель 0,1н раствора тиосульфата натрия. Добавляя в стакан горячую воду, поднять её температуру на 14 - 15° выше температуры первого опыта и по термометру наблюдать её охлаждение. Когда температура будет на 10° выше, провести опыт точно так же, как первый.

Опыт 3. Проведение опыта при температуре, повышенной на 20°. Опыт проводиться так же, как в предыдущем случае, но температура воды в термостате первоначально повышается на 24 - 25°выше комнатной, а добавление серной кислоты к гипосульфиту производится в тот момент, когда она будет выше температуры первого опыта ровно на 20°. Все опытные данные и результаты расчетов записываются в виде таблицы. Вместо индексов указать фактические температуры.

Вычислить:

А) относительную скорость реакции.

Примем скорость реакции при комнатной температуре

в первом опыте. Поскольку скорость и величина, обратная времени,

из этой пропорции находим

Аналогично составляем пропорцию и вычисляем

Б) термический коэффициент скорости по Вант - Гоффу. Его вычисляют по результатам двух опытов, независимо один от другого.

Выполнение работы является удовлетворительным в том случае, если результаты этих двух вычислений расходятся незначительно. Тогда можно взять их средние значения. При резком расхождении работу нужно повторить.

Скорость химических реакций в гомогенных и

ГЕТЕРОГЕННЫХ СИСТЕМАХ

Опыт 1. Влияние величины поверхности раздела реагирующих веществ на скорость реакции в гетерогенной системе

Растворение карбоната кальция в хлороводородной кислоте

Выполнение работы . Взять два небольших, по возможности оди­наковых, кусочка мела. Один из них положить на кусочек филь­тровальной бумаги и стеклянной палочкой измельчить его в по­рошок. Полученный порошок поместить в коническую пробирку. Второй кусочек мела целиком опустить в другую коническую пробирку. В обе пробирки одновременно добавить одинаковое количество (10-20 капель) хлороводородной кислоты плотностью - 1,19 г/см 3 . (Для соблюдения одновременности добавления кислоты опыт могут проводить два студента совместно). Отметить время полного растворения мела в каждом случае.

Запись данных опыта. Написать уравнение соответствующей
реакции. Почему скорость растворения мела в этих двух случаях
различна?

Опыт 2. Влияние катализатора на скорость реакции

Каталитическое восстановление железа (III) Выполнение работы. В две пробирки внести по 10 капель 0,5 н. раствора роданида калия и по 1 капле 0,5 н. раствора…

Опыт 3. Смещение химического равновесия обратимых реакций

Влияние концентрации реагирующих веществ на смещение равновесия Выполнение работы. В четыре конические пробирки внести по 5-7 капель 0,0025 н. растворов хлорида железа (III) и…

ТЕМА: РАСТВОРЫ

Опыт 1 Определение плотности раствора ареометром.

Рисунок 1- Ареометр для определения плотности раствора

Опыт 2 Приготовление растворов различной концентрации

А) Приготовление 0,1н раствора серной кислоты.

2. Сколько мл 10% раствора серной кислоты (ρ, см. опыт №1) необходимо взять для приготовления 250мл 0,1н раствора серной кислоты. 3. Сколько мл 15% раствора серной кислоты (ρ, см. опыт №1) необходимо… 4. Сколько мл 15% раствора серной кислоты (ρ, см. опыт №1) необходимо взять для приготовления 250мл 0,1н раствора…

Б) Приготовление раствора заданной концентрации смешением растворов более высокой и более низкой концентрации

2. Приготовить 150 мл 12%-ного раствора гидроксида натрия, имея в своем, распоряжении 5%-ный и 25%-ный растворы NaOH. 3. Приготовить 500 мл 20%-ного раствора гидроксида натрия, имея в своем,… 4. Приготовить 250 мл 15%-ного раствора гидроксида натрия, имея в своем, распоряжении 8%-ный и 25%-ный растворы…

Опыт 3 Определение концентрации растворов

Бюретку вместимостью 10 мл (рисунок 2в) промыть небольшим объемом 0,1н раствора NaOH, после чего вылить ее через нижний конец бюретки, снабженный… В коническую колбочку вместимостью 30-50 мл сухой пипеткой (рисунок 2б) внести… Повторить титрование еще три раза. Резкое изменение окраски фенолфталеина от одной капли щелочи является показателем…

ТЕМА: ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

Опыт 1. Сравнение электропроводности растворов некоторых электролитов.

В стакан с электродами налить 20-30 мл дистиллированной воды. Загорается ли лампочка? Проводит ли вода электрически ток? Внести в стакан с водой 4-5… Объяснить, почему раствор соли является проводником тока, хотя чистая вода и… В четыре стакана вместимостью 50 мл каждый налить по 20-30 мл 0,1 н. растворов: в первый – хлороводородной кислоты, во…

Опыт 2. Характер диссоциации гидроксидов

Выполнение работы. Пронумеровать 5 пробирок и внести по 4-5 капель 0,5 н. растворов: в первую пробирку MgCl2 , во вторую- AlCl3 , в третью… Аналогичным образом исследовать свойства гидроксидов алюминия, кремния, никеля(II) и цинка. В чем они растворяются?…

Опыт 3. Сравнение химической активности кислот

а) Взаимодействие хлороводородной и уксусной кислот с мрамором. Выполнение работы.В одну пробирку внести 3-4 капли 2н. раствора уксусной кислоты, в другую – столько же 2 н. раствора…

Опыт 4. Смещение равновесия диссоциации слабых электролитов

а) Влияние соли слабых кислот на диссоциацию этой кислоты Выполнение работы. В две пробирки по 5-7 капель 0,1 н. раствора уксусной кислоты. В каждую пробирку прибавить одну…

Опыт 1. Реакция среды в растворах различных солей

Растворы размешать (стеклянные палочки не переносить из одного раствора в другой). По изменению окраски лакмуса сделать вывод о реакции среды в растворе каждой… Какие из исследованных солей подвергаются гидролизу? Написать ионные и молекулярные уравнения реакций их гидролиза и…

Опыт 2. Образование основных и кислых солей при гидролизе

А) Гидролиз сульфита натрия

На присутствие каких ионов в растворе указывает найденное значение pH? В результате какого процесса эти ионы появились? По отсутствию запаха сернистого газа убедиться в том, что сульфит натрия… Написать молекулярное и ионное уравнения реакции гидролиза сульфита натрия. При гидролизе каких солей получаются…

Опыт 3. Факторы, влияющие на степень гидролиза солей

A) Влияние силы кислоты и основания, образующих соль, на степень её гидролиза

Написать ионные уравнения гидролиза сульфита натрия и карбоната натрия (по первой ступени). В растворе какой соли окраска фенолфталеина более… Степень гидролиза какой соли при одинаковых концентрациях и температуре должна… Сделать общий вывод о влиянии силы кислоты и основания, образующих соль, на степень её гидролиза.

ТЕМА: ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ

ПРОЦЕССЫ

ВОДОРОД

Опыт 1 Получение водорода

Открыть кран газоотводной трубки. Наблюдать, как кислота вливается в аппарат, заполняет нижнюю часть его и поднимается в среднюю, где находится… Ознакомиться с автоматичностью действия аппарата Киппа. Для этого закрыть кран… НИКОГДАне зажигать водород на конце газоотводной трубки аппарата Киппа, не проверив его на чистоту и не будучи…

ПРОВЕРКА ЧИСТОТЫ ВОДОРОДА

Опыт 2 Переливание водорода.

Проверить чистоту водорода и наполнить им большую пробирку, держа её вверх дном, поместить с ней рядом, тоже вверх дном, другую пробирку так, чтобы их отверстия были рядом. Не отодвигая пробирки с водородом, повёртывать её вниз дном так, чтобы пустая пробирка накрыла бы пробирку с водородом. Разъединив пробирки, поднести каждую из них к пламени спиртовки. В какой пробирке наблюдается вспышка?

Опыт 3 Образование воды при горении.

ПРОВЕРИТЬ ВОДОРОД на чистоту. Если он чист, зажгите его на конце газоотводной трубки и, держа трубку вверх, накройте пламя стеклянной банкой, прекратив процесс выделения водорода. Что для этого надо сделать? Что наблюдается на стенках банки? Записать уравнение реакции.

КИСЛОРОД

ПОЛУЧЕНИЕ КИСЛОРОДА И СЖИГАНИЕ В НЁМ ВЕЩЕСТВ

1. Ознакомиться с устройством газометра. 2. В пробирку поместить перманганат калия, закрыть пробкой с газоотводной…

Опыт 2. Сжигание серы в кислороде.

Опыт 3. Сжигание магния в кислороде.

Наполнить банку кислородом, как в предыдущем опыте. Взять тигельными щипцами стружку или ленту магния, нагревать в пламени спиртовки, пока она не загорится и быстро внести в банку с кислородом. Что собой представляет оксид магния? Испытать характер оксида магния. Для этого, как в предыдущем опыте, влить в банку немного раствора фиолетового лакмуса и взболтать. Как изменился цвет лакмуса? Сделать вывод о характере образующегося гидроксида.

Опыт 4. Сжигание железа в кислороде.

Влияние среды на протекание окислительно - восстановительных процессов Влияние рН среды на характер восстановления перманганата калия

H2O2 + 2H+ + 2e- = 2H2O

для реакции окисления пероксида водорода (H 2 O 2 – восстановитель):

H 2 O 2 – 2e - = O 2 + 2H +

б)Взаимодействие пероксида водорода с иодидом калия

Выполнение работы. К раствору иодида калия, подкисленному серной кислотой, прибавить 1 – 2 капли раствора пероксида водорода. Для какого вещества характера появившаяся окраска раствора?

Написать уравнение реакции. Окислителем или восстановителем является в ней пероксид водорода?

в) Взаимодействие пероксида водорода с оксидом ртути (II)

Выполнение работы. Поместить в пробирку 3 – 4 капели раствора нитрата ртути Hg(NO 3) 2 и добавить столько же 2 н. раствора щелочи до выпадения осадка оксида ртути (II). Отметить цвет осадка. Добавить 4 – 5 капель раствора пероксида водорода и наблюдать изменение цвета осадка вследствие образования взвешенных частиц металлической ртути. Какой газ выделяется?

Написать уравнение реакции. Окислитлем и восстановителем является пероксид водорода в данной реакции? Сделать соотвествующие выводы.

ОПРЕДЕЛЕНИЕ ЭЛЕКТРОДНЫХ ПОТЕНЦИАЛОВ. НАПРАВЛЕНИЕ

ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ

ПРОЦЕССОВ

Выполнение работы.Один из микростаканчиков 1 (рисунок) заполнить доверху 1М раствором сульфата цинка (точнее раствором, в котором активность ионов… Запись данных опыта.Изобразить двойной электрический слой на гра­нице раздела металл - раствор его соли на цинковом и…

ЭЛЕКТРОЛИЗ ВОДНЫХ РАСТВОРОВ

Описанные ниже опыты проводят в приборе, представленным на рисунке.

Б) Электролиз раствора иодида калия

Отметить изменение цвета раствора около катода и анода. Написать уравнение катодного и анодного процессов. Почему окрасились растворы в катодном и…

В) Электролиз раствора сульфата натрия

Выполнение работы. В стакане, объемом 100 мл смешать раствор сульфата натрия с нейтральным раствором лакмуса и вылить полученный раствор в…

Г) Электролиз водных растворов солей с растворимыми анодами

Выполнение работы . Налить в электролизер 0,5 н. раствор сульфата меди, опустить в него графитовые электроды и пропустить через раствор электрический ток. Через несколько минут прекратить электролиз и отметить на катоде красный налет меди. Написать уравнения катодного и анодного процессов. Какой газ в небольших количествах выделяется на аноде?

Не отключая электролизер от батарейки, поменять местами электроды в коленах электролизера, вследствие чего электрод, покрывшийся вначале медью, окажется анодом. Снова пропустить электрический ток. Что происходит с медью на аноде? Какое вещество выделяется на катоде? Написать уравнения катодного и анодного процессов, протекающих при электролизе сульфата меди с медным анодом.

Провести аналогичный опыт с 0,5 н. раствором сульфата никеля (II). Что выделяется на катоде? Написать уравнение катодного восстановления никеля. Какое вещество окисляется на аноде при электролизе сульфата никеля с угольным анодом? С никелевым анодом? Написать уравнения соответствующих анодных процессов.

ТЕМА: КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Опыт 1. Получение и свойства некоторых аммиакатов

Разбавить раствор приблизительно равным объёмом спирта и отцентрифуговать образовавшиеся при этом кристаллы [Сu(NH3)4]SO4 ·H2O – комплексного… Написать уравнения всех реакций, проведённых в этом опыте.

Опыт 2. Исследование тетрааминкупро(׀׀) сульфата

В четыре пронумерованные пробирки внести пипеткой по 10 капель исследуемого раствора комплексной соли. а) Проба на ион Cu2+ действием щёлочи. В пробирку №1 добавить несколько капель… б) Проба на ион Cu2+ действием сульфида натрия. В пробирку №2 добавить несколько капель раствора Na2S. Наблюдается ли…

ТЕМА: ХИМИЯ ЭЛЕМЕНТОВ

ГАЛОГЕНЫ

Опыт 1. Получение хлора

Выполнение работы. В три пробирки положить по 3-4 кристаллика различных окислителей: в первую диоксида марганца MnO2 или диоксида свинца PbO2, во… а) получение хлора, учитывая, что окислительные числа марганца меняются с +4 в… б) взаимодействия хлора с тиосульфатом натрия с участием воды; реакция протекает с образованием свободной серы,…

Опыт 2. Получение хлорной воды и исследование её свойств

А) Получение хлорной воды

Написать уравнение реакции получения хлора окислением соляной кислоты перманганатом калия, учитывая, что окислительное число марганца изменяется от…

Б) Исследование состава и свойств хлорной воды

Cl2 + H2O ↔HClO + HCl. (1) При этом равновесие сильно смещено влево. Поэтому хлорной водой можно… HClO = HCl + O (2)

Опыт 3. Получение брома

Выполнение работы. В сухую цилиндрическую пробирку поместить 2-3 кристаллика бромида калия или натрия и столько же диоксида марганца. Осторожно встряхнуть пробирку и прибавить к смеси 2-3 капли концентрированной серной кислоты (пл. 1,84 г/см 3). Что представляют собой выделяющиеся бурые пары? Написать уравнение реакции получения брома.

Опыт 4. Получение иода

Опыт 5. Окислительные свойства свободных галогенов (окислительное число равно…

А) Сравнение окислительной активности свободных галогенов.

По окраске бензольного кольца определить, какой галоген выделяется в свободном состоянии в каждом случае. Написать уравнения реакций взаимного…

Б) Окисление бромом магния или цинка.

Внести впробирку 3 – 5 капель бромной воды и немного порошка магния или цинка. Перемешать стеклянной палочкой. Отметить обесцвечивание растворов бромной водой и указать причину этого явления. Написать соответствующее уравнение реакции.

Опыт 6. Получение водородных соединений галогенов (галогеноводородов).

Галогеноводороды могут быть получены действием нелетучих и не являющихся окислителями кислот на галиды металлов.

Б) Действие плавиковой кислоты на стекло.

В) Получение хлороводорода и его растворение в воде.

Наполнив пробирку сероводородом, плотно закрыть ее пробкой. Отсоединить капилляр от трубки, быстро закрыть его указательным пальцем и, перевернув…

Г) Получение бромоводорода и иодоводорода.

Положить в одну пробирку 2-3 микрошпателя бромида кадия или натрия, в другую – столько же какого-либо иодида. В обе пробирки добавить по 5-10 капель концентрированного раствора фосфорной ортокислоты. Подогреть растворы на маленьком пламени горелки. Наблюдать выделение бромоводорода и иодоводорода в виде белого дыма. Выделяется ли при этом свободный бром и иод? Сделать вывод, окисляет ли фосфорная кислота бромоводород и иодоводород? Написать уравнения реакций.

Опыт 7. Восстановительные свойства галогеноводородов и галид- ионов.

А) Восстановление серной кислоты.

Отметить во второй пробирке выделение бурых паров брома и диоксида серы SO2, в третьей – фиолетовых паров иода, серы и сероводорода, образующихся… Написать уравнение реакции взаимодействия хлорида, бромида и иодида калия или…

Б) Восстановление трихлорида железа.

Могут ли отрицательные ионы галогенов являться окислителями? Ответ обосновать. Опыт 8. Взаимодействие брома с алюминием. В демонстрационную пробирку, закрепленную в штативе над поддоном с песком, налить бром. Опустить в него алюминиевый…

Опыт 1. Получение аммиака и исследование его свойств

Опыт 2. Получение оксидов азота и азотной кислоты

а) получения оксида азота (II) взаимодействием разбавленной азотной кислоты с медью; б) окисления оксида азота (II) до оксида азота (IV) и полимеризации оксида… в) взаимодействия диоксида азота с водой, протекающего с образованием азотной и азотистой кислот;

Опыт 3. Получение азотистой кислоты и ее распад

а) взаимодействие нитрита калия с серной кислотой; б) разложения азотистой кислоты; в) распад азотистого ангидрида.

Опыт 4. Окислительно-восстановительные свойства нитритов

1.Внести в пробирку 2-4 капли раствора иодида калия и столько же 2н серной кислоты. Добавить 2-4 капли раствора нитрита калия или натрия. Чем… 2. Взаимодействие нитрита калия с перманганатом. В пробирку внести 2-3 капли…

Опыт 5. Окислительные свойства азотной кислоты

Взаимодействие разбавленной азотной кислоты с медью и оловом

2. Взаимодействие концентрированной азотной кислотой с медью и оловом. В 2 пробирки поместить по маленькому кусочку меди и олова. Прибавить к ним по…

Опыт 6 . Соли азотной кислоты

2-3 микрошпателя сухого нитрата калия поместить в цилиндрическую пробирку. Укрепив её наклонно в штативе, нагреть до расплавления соли. Внести…

Опыт 1. Аллотропия фосфора

P+CuSO4+H2O H3PO4+H2SO4+Cu

Опыт 2. Соли фосфорной ортокислоты

Найти константы диссоциации фосфорной ортокислоты и опреде­лить, подвергаются ли гидролизу ортофосфаты щелочных металлов. Проверить свои…

СЕРА И ЕЕ СВОЙСТВА

Опыт1. Аллотропия серы

1. Получение пластической серы. В пробирку на 10 мл. насыпать на ¼ объема мелких кусочков черенковой серы. Укрепить пробирку в держателе и…

Опыт 2. Получение диоксида серы и сернистой кислоты

Микро колбу наполнить на 1/3 ее объема кристаллами сульфата натрия, добавить 6-8 капель 4 и раствора серной кислоты и быстро закрыть пробкой о… Опыт 3. Окислительные и восстановительные свойства серы(IV)

Опыт 5. Дегидратирующие свойства серной кислоты

Опыт 6 Теосерная кислота и теосульфаты

1. Исследование тиосерной кислоты. Внести в пробирку 5-6 капель раствора тиосульфата натрия Na2S2O3 и 3-4 капли раствора серной кислоты. Отметить… 2. Взаимодействие тиосульфата натрия с хлором и бромом. В две пробирки с… 3. Взаимодействие тиосульфата натрия с йодом. В пробирку с йодной водой (5-6 капель) прибавить по каплям раствор…

ПРИЛОЖЕНИЕ

Таблица 1 - Константы нестойкости некоторых комплексных ионов

Комплексный ион К нест
- 1 ∙ 10 -21
+ 7 ∙ 10 -8
3- 1 ∙ 10 -13
2- 9 ∙ 10 -3
2- 8 ∙ 10 -7
2- 1 ∙ 10 -17
2+ 8 ∙ 10 -8
2+ 8 ∙ 10 -6
3+ 6 ∙ 10 -36
2+ 2 ∙ 10 -13
3- 5 ∙ 10 -28
4- 1 ∙ 10 -37
3- 1 ∙ 10 -44
2+ 1 ∙ 10 -3
2- 1 ∙ 10 -21
2- 8 ∙ 10 -16
2- 1 ∙ 10 -30
2- 1 ∙ 10 -22
2- 3 ∙ 10 -16
2+ 2 ∙ 10 -9
2- 2 ∙ 10 -17
] 2+ 4 ∙ 10 -10

Таблица 2 - Плотность растворов некоторых кислот, щелочей и аммиака при 20 0 С (в г/см 3 , г/мл).

Преподаватель: Кораблёва А.А.

ОТЧЕТ

О ЛАБОРАТОРНОЙ РАБОТЕ

ПО КУРСУ: ОБЩАЯ ХИМИЯ

" СКОРОСТЬ РЕАКЦИИ В РАСТВОРАХ "

ОФ 62 5528 1.04 ЛР

Работу выполнил

студент группы

Санкт – Петербург

Цель работы:

Определить константу скорости, температурный коэффициент, энергию активации реакции взаимодействия тиосульфата натрия с серной кислотой.

В данной лабораторной работе изучается реакция между тиосульфатом натрия (гипосульфитом) Na2S2O3 и серной кислотой H2SO4.

Эта реакция протекает в две стадии:

1) (быстро)

Первая стадия ионного обмена протекает практически мгновенно. Тиосерная кислота неустойчивое соединение, распадающееся с выделением белого осадка серы.

2) (медленно)

О скорости реакции можно судить по появлению опалесценции и дальнейшему помутнению раствора от выпавшей серы.

Суммарная реакция определяется второй стадией процесса и зависит от концентрации H2SO4 , а значит и Na2S2O3 (реакция псевдомолекулярна).

Кинетическое уравнение имеет вид:

Приборы и реактивы:

Термостаты, термометры, мерные цилиндры, пробирки, пробиркодержатели, секундомер, растворы Na2S2O3 и H2SO4 .

Опыт №1:

Влияние тиосульфата на скорость химической реакции.

Зависимость скорости реакции от концентрации тиосульфата натрия.

Обработка результатов опыта:

    Рассчитываем относительную скорость реакции по формуле:

2. Исходя из кинетического уравнения, определяем значение константы скорости реакции:

Р

3. Определяем среднее значение константы для данной комнатной температуры, в данном случае Т = 14 град цельс.

4
. Выразить зависимость скорости реакции от концентрации тиосульфата – графически. (см. рис.№1).

5. Графически определяем константу скорости реакции как тангенс угла наклона прямой ОА к оси абсцисс. Сравниваем графически определенную константу с ее аналитическим значением.

КГР = tg = 0.162 КСР = 0.17 КГР  КСР

Опыт №2:

Влияние температуры на скорость химической реакции.

Температура опыта,

Т, град цельс.

реакции t, с

Относит. скорость

реак. V, 1/с

Конст. скор. реак. К, л/моль*с

Обработка результатов опыта:

1.Рассчитываем относительную скорость реакции при каждой температуре:

Результаты смотреть в вышеприведенной таблице.

2.Исходя из кинетического уравнения определяем значение константы для каждой температуры:

Р
езультаты смотреть в вышеприведенной таблице.

3.Выражаем графически влияние температуры на скорость химической реакции. (см. рис.№2).

4.Исходя из уравнения Ван-Гоффа определяем для каждого температурного интервала значение температурного коэффициента и вычисляем его среднее значение:

К2/К1 = 1 = 2.42

К3/К2 = 2 = 1.97 сред = 2.3

К4/К3 = 3 = 2.49

5
. Исходя из уравнения Аррениуса вычисляем аналитическое значение энергии активации для каждого температурного интервала:

Е
а1 = 61785 Дж/моль Еа2 = 50729 Дж/моль Еа3 =72882 Дж/моль

И вычисляем его среднее значение:

ЕаСРЕД = 61798 Дж/моль

6. Выстраиваем графическую зависимость lgK от 1/Т по вычисленным константам скоростей при разных температурах и определяем энергию активации графическим способом (см. рис. №3).

tg = - Еа / 2.3 R , следовательно

ЕаГР = -2.3 R tg = -2.3 * 8.3 * tg = 19.09* 3230 = 61660 Дж/моль

7. Сравниваем значения энергии активации полученные графическим и аналитическим путем:

ЕаГР = 61660 Дж/моль ЕаСРЕД = 61798 Дж/моль ЕаГР  ЕаГР

Вывод:

При температуре равной const, скорость химической реакции пропорциональна концентрации веществ, участвующих в этой реакции. (см. рис.№1)

С увеличением температуры скорость химической реакции увеличивается

При условии, что концентрация остается неизменной. Это можно объяснить тем, что с ростом температуры атомы веществ переходят в более возбужденное состояние, т. е. они получают дополнительную энергию – энергию активации, необходимую для разрыва химической связи и образования нового вещества.