Практика применения гамма-распределения в теории надежности технических систем. Установление функции распределения показателей надежности по результатам обработки данных статистической информации Мера Лебега в конечномерном пространстве

Гамма-распределение

Гамма-распределение является двухпараметрическим распределением. Оно занимает достаточно важное место в теории и практике надежности. Плотность распределения имеет ограничение с одной стороны (). Если параметр а формы кривой распределения принимает целое значение, это свидетельствует о вероятности появления такого же числа событий (например, отказов)

при условии, что они независимы и появляются с постоянной интенсивностью λ (см. рис. 4.4).

Гамма-распределение широко применяют при описании появления отказов стареющих элементов, времени восстановления, наработки на отказ резервированных систем. При различных параметрах гамма-распределение принимает разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством

где λ > 0, α > 0.

Кривые плотности распределения приведены на рис. 4.5.

Рис. 4.5.

Функция распределения

Математическое ожидание и дисперсия равны соответственно

При α < 1 интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия, при α > 1 – возрастает, что характерно для периода изнашивания и старения элементов.

При α = 1 гамма-распределение совпадает с экспоненциальным распределением, при α > 10 гамма-распределение приближается к нормальному закону. Если а принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга. Если λ = 1/2, а значение а кратно 1 /2, то гамма-распределение совпадает с распределением χ2 (хи-квадрат ).

Установление функции распределения показателей надежности по результатам обработки данных статистической информации

Наиболее полной характеристикой надежности сложной системы является закон распределения, выраженный в виде функции распределения, плотности распределения или функции надежности.

О виде теоретической функции распределения можно судить по эмпирической функции распределения (рис. 4.6), которая определяется из соотношения

где т, – число отказов на интервале времени t; N – объем испытаний; t i < t < t i+1 интервал времени, на котором определяют эмпирическую функцию.

Рис. 4.6.

Построение эмпирической функции осуществляют, выполняя суммирование приращений, полученных на каждом интервале времени:

где k – число интервалов.

Эмпирическая функция надежности является функцией, противоположной функции распределения; ее определяют по формуле

Оценку плотности вероятности находят по гистограмме. Построение гистограммы сводится к следующему. Всю область значений времени t разбивают на интервалы t 1, t 2, ..., t i и для каждого из них осуществляют оценку плотности вероятности по формуле

где т i число отказов на i -м интервале, i = 1, 2,..., k; (t i+1 – t i) – отрезок времени i -го интервала; N – объем испытаний; k – число интервалов.

Пример гистограммы приведен на рис. 4.7.

Рис. 4.7.

Сглаживая ступенчатую гистограмму плавной кривой, но ее виду можно судить о законе распределения случайной величины. В практике для сглаживания кривой часто, например, используют метод наименьших квадратов. Для более точного установления закона распределения необходимо, чтобы число интервалов было не менее пяти, а число реализаций, попадающих в каждый интервал, – не менее десяти.

Разночтения в понимании терминологии надежности

Проблема терминологии является достаточно сложной в различных областях науки и человеческой деятельности в целом. Известно, что споры о терминах ведутся в течение многих веков. Если коснуться переводов стихотворений, то можно увидеть яркое подтверждение этой мысли. Например, переводы такого всемирно известного шедевра, как "Гамлет", у Б. Л. Пастернака и Π. П. Гнедича резко отличаются. У первого из них смысл трагедии перевешивает музыку стиха, в отличие от второго. А оригинал "Гамлета", написанный языком XVI в., труден для понимания неангличанам, да и англичанам тоже, поскольку сам язык сильно эволюционировал за несколько веков, как, собственно, и любой другой язык в соответствии с законом синхронизма-десинхронизма.

Аналогичная картина наблюдается и в мировых религиях. Перевод Библии с церковно-славянского на русский язык, длившийся 25 лет, "развел" (вплоть до остановки перевода) святителя Филарета Московского (Дроздова) и крупнейшего церковного писателя – святителя Феофана Затворника (в ближайшее время запланировано издание собрания его сочинений в 42 т.). Переводы и уточнения "книги книг" Библии "переводят" людей в лагеря непримиримых врагов по жизни в нашем мире. Рождаются секты, еретики и герои, иногда даже льется кровь. А многочисленные переводы на русский язык основополагающей в сфере философии работы Иммануила Канта "Критика чистого разума" только укрепляют справедливость нашего тезиса о сложности проблемы терминологии (сверхбольшая система) в различных областях науки и человеческой деятельности в целом.

Антиномические явления имеют место в области науки и техники. Одно из решений проблемы обеспечения корректности и адекватности терминологии изложил Г. Лейбниц. Он в плане развития науки и техники в XVII в. предлагал для прекращения споров давать определения терминов с помощью универсального языка в цифровой форме (0011...).

Отметим, что в науке о надежности путь определения терминов традиционно решается на государственном уровне с помощью государственных стандартов (ГОСТов). Однако появление все более высокоинтеллектуальных технических систем, взаимодействие и сближение живых и неживых объектов, в них функционирующих, ставит новые, весьма трудные задачи обучения в педагогике и психологии, заставляет искать творческие компромиссные решения.

У зрелого и поработавшего в конкретной научной области, и в частности в области надежности, сотрудника актуальность вопросов терминологии не вызывает сомнений. Как писал Готфрид Вильгельм Лейбниц (в работе о создании универсального языка), споров было бы меньше, если бы термины были определены.

Разночтения в понимании терминологии надежности попытаемся сгладить следующими замечаниями.

Мы говорим "функция распределения" (ФР), опуская слово "наработка" или "отказ". Наработка чаще всего понимается как категория времени. Для невосстанавливаемых систем по смыслу более правильно надо говорить – интегральная ФР наработки до отказа, а для восстанавливаемых – наработка па отказ. А поскольку наработку чаще всего понимают как случайную величину, применяется отождествление вероятности безотказной работы (ВБР) и (1 – ФР), называемой в этом случае функцией надежности (ФН). Целостность такового подхода достигается за счет полной группы событий . Тогда

ВБР = ФН = 1 – ФР.

То же справедливо в отношении плотности распределения (ПР), которая является первой производной от ФР, в частности по времени, и, образно говоря, характеризует "скорость" появления отказов.

Полнота описания надежности изделия (в частности, для изделий разового применения), включающая динамику устойчивости поведения, характеризуется интенсивностью отказов через отношение ПР к ВБР и физически понимается как смена состояния изделия, а математически – введена в теории массового обслуживания через понятие потока отказов и ряд допущений в отношении самих отказов (стационарность, ординарность и др.).

Интересующихся этими вопросами, возникающими при выборе показателей надежности на этапе проектирования изделий, можно отослать к трудам таких именитых авторов, как А. М. Половко, Б. В. Гнеденко, Б. Р. Левин – выходцев из лаборатории надежности при Московском университете, руководимой А. Н. Колмогоровым, а также А. Я. Хинчина, E. С. Венцель, И. А. Ушакова, Г. В. Дружинина, А. Д. Соловьева, Ф. Байхельта, Ф. Прошана – основателей статистической теории надежности.

  • См.: Колмогоров А. Н. Основные понятия теории вероятностей. М. : Мир, 1974.

В этой статье описаны синтаксис формулы и использование функции ГАММА.РАСПП в Microsoft Excel.

Возвращает гамма-распределение. Эту функцию можно использовать для изучения переменных, которые имеют асимметричное распределение. Гамма-распределение широко используется при анализе систем массового обслуживания.

Синтаксис

ГАММА.РАСП(x;альфа;бета;интегральная)

Аргументы функции ГАММА.РАСП описаны ниже.

    x - обязательный аргумент. Значение, для которого требуется вычислить распределение.

    Альфа - обязательный аргумент. Параметр распределения.

    Бета - обязательный аргумент. Параметр распределения. Если аргумент "бета" = 1, функция ГАММА.РАСП возвращает стандартное гамма-распределение.

    Интегральная - обязательный аргумент. Логическое значение, определяющее форму функции. Если аргумент "интегральная" имеет значение ИСТИНА, функция ГАММА.РАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, возвращается функция плотности распределения вероятности.

Замечания

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем - клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Описание

Значение, для которого требуется вычислить распределение

Параметр распределения альфа

Параметр распределения бета

Формула

Описание

Результат

ГАММА.РАСП(A2;A3;A4;ЛОЖЬ)

Плотность вероятности при использовании значений x, альфа и бета в ячейках A2, A3, A4 с интегральным аргументом ЛОЖЬ.

ГАММА.РАСП(A2;A3;A4;ИСТИНА)

Интегральное распределение при использовании значений x, альфа и бета в ячейках A2, A3, A4 с интегральным аргументом ИСТИНА.

4. Случайные величины и их распределения

Гамма-распределения

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k -го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гамма-распределения имеет вид

Плотность вероятности в формуле (17) определяется тремя параметрами a , b , c , где a >0, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Γ(а) является нормировочным, он введен, чтобы

Здесь Γ(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (17),

При фиксированном а формула (17) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

(18)

Распределение вида (18) называется стандартным гамма-распределением. Оно получается из формулы (17) при b = 1 и с = 0.

Частным случаем гамма-распределений при а = 1 являются экспоненциальные распределения (с λ = 1/ b ). При натуральном а и с =0 гамма-распределения называются распределениями Эрланга. С работ датского ученого К.А.Эрланга (1878-1929), сотрудника Копенгагенской телефонной компании, изучавшего в 1908-1922 гг. функционирование телефонных сетей, началось развитие теории массового обслуживания. Эта теория занимается вероятностно-статистическим моделированием систем, в которых происходит обслуживание потока заявок, с целью принятия оптимальных решений. Распределения Эрланга используют в тех же прикладных областях, в которых применяют экспоненциальные распределения. Это основано на следующем математическом факте: сумма k независимых случайных величин, экспоненциально распределенных с одинаковыми параметрами λ и с , имеет гамма-распределение с параметром формы а = k , параметром масштаба b = 1/λ и параметром сдвига kc . При с = 0 получаем распределение Эрланга.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2 a - целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

Математическое ожидание М(Х) = ab + c ,

Дисперсию D (X ) = σ 2 = ab 2 ,

Неотрицательная случайная величина имеет гамма-распределение , если ее плотность распределения выражается формулой

где и , – гамма-функция:

Таким образом, гамма-распределение является двухпараметрическим распределением, оно занимает важное место в математической статистике и теории надежности. Это распределение имеет ограничение с одной стороны .

Если параметр формы кривой распределения – целое число, то гамма-распределение описывает время, необходимое для появления событий (отказов), при условии, что они независимы и появляются с постоянной интенсивностью .

В большинстве случаев это распределение описывает наработку системы с резервированием отказов стареющих элементов, время восстановления системы с резервированием отказов стареющих элементов, время восстановления системы и т. д. При различных количественных значениях параметров гамма-распределение принимает самые разнообразные формы, что и объясняет его широкое применение.

Плотность вероятности гамма-распределения определяется равенством, если

Функция распределения . (9)

Заметим, что функция надежности выражается формулой:

Гамма-функция обладает свойствами: , , (11)

откуда следует, что если – целое неотрицательное число, то

Кроме того, нам в последующем потребуется еще одно свойство гамма-функции: ; . (13)

Пример. Восстановление радиоэлектронной аппаратуры подчиняется закону гамма-распределения с параметрами и . Определить вероятность восстановления аппаратуры за час.

Решение. Для определения вероятности восстановления воспользуемся формулой (9) .

Для целых положительных значений функции , а при .

Если перейти к новым переменным, значения которых будут выражены ; , то получим табличный интеграл:

В этом выражении решение интеграла в правой части можно определить по той же формуле:


а при будет

При и новые переменные будут равны и , а сам интеграл будет равен

Значение функции будет равно

Найдем числовые характеристики случайной величины , подчиненной гамма-распределению

В соответствии с равенством (13) получим . (14)

Второй начальный момент найдем по формуле

откуда . (15)

Заметим, что при интенсивность отказов монотонно убывает, что соответствует периоду приработки изделия. При интенсивность отказов возрастает, что характеризует период изнашивания и старения элементов.

При гамма-распределение совпадает с экспоненциальным распределением, при гамма-распределение приближается к нормальному закону. Если принимает значения произвольных целых положительных чисел, то такое гамма-распределение называют распределением Эрланга -го порядка :



Здесь достаточно лишь указать, что закону Эрланга -го порядка подчинена сумма независимых случайных величин , каждая из которых распределена по показательному закону с параметром . Закон Эрланга -го порядка тесно связан со стационарным пуассоновским (простейшим) потоком с интенсивностью .

Действительно, пусть имеется такой поток событий во времени (рис. 6).

Рис. 6. Графическое представление пуассоновского потока событий во времени

Рассмотрим интервал времени , состоящий из суммы интервалов между событиями в таком потоке. Можно доказать, что случайная величина будет подчинена закону Эрланга -го порядка.

Плотность распределения случайной величины , распределенной по закону Эрланга -го порядка, может быть выражена через табличную функцию распределения Пуассона:

Если значение кратно и , то гамма-распределение совпадает с распределением хи-квадрат .

Заметим, что функцию распределения случайной величины можно вычислить по следующей формуле:

где определяются выражениями (12) и (13).

Следовательно, имеют место равенства, которые нам в дальнейшем пригодятся:

Пример. Поток производимых на конвейере изделий является простейшим с параметром . Все производимые изделия контролируются, бракованные укладываются в специальный ящик, в котором помещается не более изделий, вероятность брака равна . Определить закон распределения времени заполнения ящика бракованными изделиями и величину , исходя из того, чтобы ящик с вероятностью не переполнялся в течение смены.

Решение. Интенсивность простейшего потока бракованных изделий будет . Очевидно, что время заполнения ящика бракованными изделиями распределено по закону Эрланга


с параметрами и :

следовательно (18) и (19): ; .

Число бракованных изделий за время будет распределено по закону Пуассона с параметром . Следовательно, искомое число нужно находить из условия . (20)

Например, при [изделие/ч]; ; [ч]

из уравнения при

Случайная величина, имеющая распределение Эрланга, обладает следующими числовыми характеристиками (табл. 6).

Таблица 6

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения , целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,

Заметим, что случайная величина, имеющая нормированное распределение Эрланга -го порядка, обладает следующими числовыми характеристиками (табл. 7).

Таблица 7

Плотность вероятности , , где – параметр масштаба ; – параметр формы, порядок распределения , целое положительное число
Функция распределения
Характеристическая функция
Математическое ожидание
Мода
Дисперсия
Коэффициент вариации
Асимметрия
Эксцесс
Начальные моменты , , ,
Центральные моменты ,

Рассмотрим плотность

параметры распределения. Распределение с такой плотностью называется гамма распределение . Приведем график плотности этого распределения при

Величина

рассматриваемая как функция переменной

называется гамма-функцией и имеет следующие, легко доказываемые свойства

Это распределение обозначается

Гамма распределение обобщает экспоненциальное распределение и превращается в него при

Гамма распределение с целым параметром

называется распределение Эрланга порядка и обозначается

Распределение

где n – целое, называется распределение хи-квадрат и обозначается

Построение меры в конечномерном пространстве Борелевская сигма-алгебра в конечномерном пространстве

Борелевская сигма-алгебра на пространстве действительных векторов определяется аналогично борелевской сигма-алгебре на прямой с заменой прямоугольников

на параллелепипеды

Обозначим ее

Эта сигма-алгебра содержит все практически важные множества векторов. Множество, принадлежащее борелевской сигма-алгебре называется борелевское множество .

Определение случайного вектора

основное вероятностное пространство

пространство векторов с борелевской сигма-алгеброй

Вероятностная мера, определенная на борелевской сигма-алгебре по формуле

называется распределением случайного вектора.

случайный вектор и

называется функция распределения (иначе - совместная функция распределения) случайного вектора

Аналогично одномерному случаю определяются дискретные и непрерывные случайные вектора и их распределения.

Плотность распределения случайного вектора f(x) – это функция, удовлетворяющая условию

Мера Лебега в конечномерном пространстве

Мера Лебега в конечномерном пространстве это мера, приписывающая параллелепипеду его объем. В частности, мера Лебега прямоугольника это его площадь.

Мера Лебега на квадрате - Задача о встрече

Рассмотрим следующую задачу.

Два человека договорились встретиться в определенном месте в течение часа и ждать друг друга не более 10 минут. Найти вероятность, того они встретятся, если момент прихода каждого совершенно случаен.

Для решения задачи построим следующую вероятностную модель. Исходом опыта является вектор

где первая координата – момент прихода первого человека, вторая – момент прихода второго. Сигма-алгебра – все борелевские подмножества единичного (1 час=1 единица времени) квадрата. Предположение о совершенной случайности моментов прихода приводит к вероятностной мере, которая приписывает каждому множеству единичного квадрата его площадь. Эта мера называется мера Лебега на квадрате . Подсчитаем вероятность интересующего нас события. Два человека встретятся, если

Площадь этой наклонной полосы

Независимые случайные величины

Случайные величины

,

заданные на одном вероятностном пространстве, называются независимыми, если для любых борелевских множеств