Масса ca. Элемент кальций

Кальций весьма распространен в природе в форме различных соединений. В земной коре он занимает пятое место, составляя 3,25%, и чаще всего встречается в виде известняка CaCO3, доломита CaCO3*MgCO3, гипса CaSO4*2Н2О, фосфорита Ca3(PO4)2 и плавикового шпата CaF2, не считая значительной доли кальция в составе силикатных пород. В морской воде содержится в среднем 0,04% (вес) кальция

Физические и химические свойства кальция


Кальций находится в подгруппе щелочноземельных металлов II группы периодической системы элементов; порядковый номер 20, атомный вес 40,08, валентность 2, атомный объем 25,9. Изотопы кальция: 40 (97%), 42 (0,64%), 43 (0,15%), 44 (2,06%), 46 (0 003%), 48 (0,185%). Электронная структура атома кальция: 1s2, 2s2p6, 3s2p6, 4s2. Радиус атома 1,97 А, радиус иона 1,06 А. До 300° кристаллы кальция имеют форму куба с центрированными гранями и размером стороны 5,53 А, выше 450° - гексагональную форму. Удельный вес кальция 1,542, температура плавления 851°, температура кипения 1487°, теплота плавления 2,23 ккал/молщ теплота парообразования 36,58 ккал/моль. Атомная теплоемкость твердого кальция Cр = 5,24 + 3,50*10в-3 T для 298-673° К и Cp = 6,29+1,40*10в-3T для 673-1124° К; для жидкого кальция Cp = 7,63. Энтропия твердого кальция 9.95 ± 1, газообразного при 25° 37,00 ± 0,01.
Упругость пара твердого кальция исследована Ю.А. Приселковым и А.Н. Несмеяновым, П. Дугласом и Д. Томлиным. Значения упругости насыщенного пара кальция приведены в табл. 1.

По теплопроводности кальций приближается к натрию и калию, при температурах 20-100° коэффициент линейного расширения 25*10в-6, при 20° удельное электросопротивление 3,43 мк ом/см3, от 0 до 100° температурный коэффициент электрического сопротивления 0,0036. Электрохимический эквивалент 0,74745 г/а*ч. Предел прочности кальция 4,4 кг/мм2, твердость по Бринелю 13, удлинение 53%, относительное сужение 62%.
Кальций имеет серебристо-белый цвет, в изломе блестит. На воздухе металл покрывается тонкой голубовато серой пленкой из нитрида, окиси и частично перекиси кальция. Кальций гибок и ковок; его можно обрабатывать на токарном станке, сверлить, резать, пилить, прессовать, волочить и т. д. Чем чище металл, тем больше его пластичность.
В ряду напряжений кальций расположен среди наиболее электроотрицательных металлов, чем и объясняется его большая химическая активность. При комнатной температуре кальций с сухим воздухом не реагирует, при 300° и выше интенсивно окисляется, при сильном нагреве сгорает ярким оранжево-красноватым пламенем. Во влажном воздухе кальций постепенно окисляется, превращаясь в гидроокись; с холодной водой реагирует сравнительно медленно, но из горячей воды энергично вытесняет водород, образуя гидроокись.
Азот реагирует с кальцием заметно при температуре 300° и очень интенсивно при 900° с образованием нитрида Ca3N2. С водородом при температуре 400° кальций образует гидрид CaH2. С сухими галогенами, за исключением фтора, при комнатной температуре кальций не связывается; интенсивное образование галогенидов происходит при 400° и выше.
Крепкая серная (65-60° Be) и азотная кислоты действуют на чистый кальций слабо. Из водных растворов минеральных кислот очень сильно действует соляная, сильно - азотная и слабо - серная. В концентрированных растворах NaOH и в растворах соды кальций почти не разрушается.

Применение


Кальций находит все возрастающее применение в различных отраслях производства. В последнее время он приобрел большое значение как восстановитель при получении ряда металлов. Чистый металлический уран получается восстановлением металлическим кальцием фтористого урана. Кальцием или его гидридами можно восставав пивать окислы титана, а также окислы циркония, тория, тантала, ниобия и других редких металлов. Кальций является хорошим раскислителем и дегазатором при получении меди, никеля, хромоникелевых сплавов, специальных сталей, никелевых и оловянистых бронз, он удаляет из металлов и сплавов серу, фосфор, углерод.
Кальций образует с висмутом тугоплавкие соединения, поэтому его применяют для очистки свинца от висмута.
Кальций добавляют в различные легкие сплавы. Он способствует улучшению поверхности слитков, мелкозернистости и понижению окисляемости. Большое распространение имеют содержащие кальций подшипниковые сплавы. Свинцовые сплавы (0,04% Ca) могут применяться для изготовления оболочек кабеля.
Кальций применяют для дегидратации алкоголей и растворителей для десульфуризации нефтепродуктов. Сплавы кальция с цинком или с цинком и магнием (70% Ca) идут для производства высококачественного пористого бетона. Кальций входит в состав антифрикционных сплавов (свинцовокальциевых баббитов).
Благодаря способности связывать кислород и азот кальций или сплавы кальция с натрием и другими металлами применяют для очистки благородных газов и как геттер в вакуумной радиоаппаратуре. Кальций применяется также для получения гидрида, который является источником водорода в полевых условиях. С углеродом кальций образует карбид кальция CaC2, применяемый в больших количествах для получения ацетилена C2H2.

История развития


Деви впервые получил кальций в виде амальгамы в 1808 г., применив электролиз влажной извести с ртутным катодом. Бунзен в 1852 г. электролизом солянокислого раствора хлористого кальция получил амальгаму с высоким содержанием кальция. Бунзен и Матиссен в 1855 г. электролизом CaCl2 и Муассан электролизом CaF2 получили кальций в чистом виде. В 1893 г. Борхерс существенно улучшил электролиз хлористого кальция, применив охлаждение катода; Арндт в 1902 г. получил электролизом металл, содержавший 91,3% Ca. Руфф и Плата для снижения температуры электролиза применили смесь из CaCl2 и CaF2; Борхерс и Стокем при температуре ниже точки плавления кальция получали губку.
Задачу электролитического получения кальция решили Ратенау и Зютер, предложив метод электролиза с катодом касания, который вскоре стал промышленным. Было много предложений и попыток получать кальциевые сплавы электролизом, особенно на жидком катоде. По Ф.О. Банзелю, можно получить сплавы кальция электролизом CaF2 с добавками солей или фторокисей других металлов. Пулене и Meлан получали сплав Ca-Al на жидком алюминиевом катоде; Кюгельген и Сьюард получили сплав Ca-Zn на цинковом катоде. Получение сплавов Ca-Zn исследовали в 1913 г. В. Мольденгауер и Дж. Андерсен, они же получали на свинцовом катоде сплавы Pb-Ca. Коба, Симкинс и Гире применяли электролизер со свинцовым катодом на 2000 а и получали сплав с 2% Ca при выходе по току 20%. И. Целиков и В. Вазингер добавляли в электролит NaCl, чтобы получить сплав с натрием; Р.Р. Сыромятников перемешивал сплав и добивался 40-68%-ного выхода по току. Кальциевые сплавы со свинцом, цинком и медью получают электролизом в промышленном масштабе
Значительный интерес вызвал термический способ получения кальция. Алюминотермическое восстановление окислов открыл в 1865 г. H.H. Бекетов. В 1877 г. Малет обнаружил при нагревании взаимодействие смеси окислов кальция, бария и стронция с алюминием Винклер пытался восстановить эти же окислы магнием; Бильц и Вагнер, восстанавливая в вакууме окись кальция алюминием, получили низкий выход металла Гунц в 1929 г. достиг лучших результатов. А.И. Войницкий в 1938 г. в лаборатории восстанавливал окись кальция алюминием и силикосплавами. Способ запатентовали в 1938 г В конце второй мировой войны термический способ получил промышленное применение.
В 1859 г. Кароном был предложен способ получения сплавов натрия со щелочноземельными металлами действием металлического натрия на их хлориды. По этому способу получают кальций (и барин) в сплаве со свинцом До второй мировой войны промышленное производство кальция электролизом было поставлено в Германии и Фракции. В Битерфельде (Германия) в период с 1934 г по 1939 г выпускалось по 5-10 т кальция ежегодно Потребность США в кальции покрывалась импортом, составлявшим в период 1920-1940 гг 10-25 г в год. С 1940 г., когда прекратился импорт из Франции, США начали сами в значительных количествах производить кальций методом электролиза; в конце войны стали получать кальций вакуум-термическим способом; по сообщению С. Лумиса, выпуск его достигал 4,5 т в сутки. По данным Минерале Ярбук, компания Доминиум Магнезиум в Канаде выпускала кальция в год:

Сведения о масштабах выпуска кальция за последние годы отсутствуют.

17.12.2019

Серия Far Cry продолжает радовать своих игроков стабильностью. За столько времени становится понятно, чем нужно заниматься в этой игре. Охота, выживание, захват...

16.12.2019

Создавая дизайн жилого помещения, особое внимание следует уделить интерьеру гостиной - именно она станет центром вашей “вселенной”....

15.12.2019

Невозможно представить себе строительство дома без использования строительных лесов. В прочих сферах хозяйственной деятельности такие конструкции также используются. С...

14.12.2019

В качестве способа неразъемного соединения изделий из металлов сварка появилась немногим более века назад. При этом невозможно в данный момент переоценить ее значение. В...

14.12.2019

Оптимизация пространства вокруг является крайне важной как для мелких, так и для крупных складских помещений. Это существенно упрощает выполнение работ и оказывает...

13.12.2019

Металлочерепица – металлический материал для покрытия кровли. Полимерными материалами и цинком покрыта поверхность листов. Натуральную черепицу имитирует материал...

13.12.2019

Испытательное оборудование получило широкое применение в разных сферах. Его качество должно быть безупречным. Чтобы достичь такой цели, устройства оснащаются...

КАЛЬЦИЙ (латинский Calcium), Са, химический элемент II группы короткой формы (2-й группы длинной формы) периодической системы; относится к щёлочноземельным металлам; атомный номер 20; атомная масса 40,078. В природе существует 6 стабильных изотопов: 40 Са (96,941%), 42 Са (0,647%), 43 Са (0,135%), 44 Са (2,086%), 46 Са (0,004%), 48 Са (0,187%); искусственно получены радиоизотопы с массовыми числами 34-54.

Историческая справка. Многие природные соединения кальция были известны в глубокой древности и широко применялись в строительстве (например, гипс, известь, мрамор). Металлический кальций впервые выделен Г. Дэви в 1808 при электролизе смеси оксидов СаО и HgO и последующем разложении образовавшейся амальгамы кальция. Название происходит от латинского calx (родительный падеж calcis) - известь, мягкий камень.

Распространённость в природе . Содержание кальция в земной коре составляет 3,38% по массе. Из-за высокой химической активности в свободном состоянии не встречается. Наиболее распространены минералы анортит Ca, ангидрит CaSO 4 , апатит Ca 5 (РО 4) 3 (F,Cl,ОН), гипс CaSO 4 ·2Н 2 О, кальцит и арагонит СаСО 3 , перовскит CaTiO 3 , флюорит CaF 2 , шеелит CaWO 4 . Минералы кальция входят в состав осадочных (например, известняк), магматических и метаморфических горных пород. Соединения кальция содержатся в живых организмах: являются основными компонентами костных тканей позвоночных (гидроксиапатит, фторапатит), скелетов кораллов, раковин моллюсков (карбонат и фосфаты кальция) и др. Присутствие ионов Са 2+ определяет жёсткость воды.

Свойства . Конфигурация внешней электронной оболочки атома кальция 4s 2 ; в соединениях проявляет степень окисления +2, редко +1 ; электроотрицательность по Полингу 1,00, атомный радиус 180 пм, радиус иона Са 2+ 114 пм (координационное число 6). кальций - серебристо-белый мягкий металл; до 443 °С устойчива модификация с кубической гранецентрированной кристаллической решёткой, выше 443 °С - с кубической объёмно-центрированной решёткой; t пл 842°С, t кип 1484 °С, плотность 1550 кг/м 3 ; теплопроводность 125,6 Вт/(м·К).

Кальций - металл высокой химической активности (хранят в герметически закрытых сосудах или под слоем минерального масла). При нормальных условиях легко взаимодействует с кислородом (образуется кальция оксид СаО), при нагревании - с водородом (гидрид СаН 2), галогенами (кальция галогениды), бором (борид СаВ 6), углеродом (кальция карбид СаС 2), кремнием (силициды Ca 2 Si, CaSi, CaSi 2 , Ca 3 Si 4), азотом (нитрид Ca 3 N 2), фосфором (фосфиды Са 3 Р 2 , СаР, СаР 5), халькогенами (халькогениды состава СаХ, где Х - S, Se, Те). Кальций взаимодействует с другими металлами (Li, Cu, Ag, Au, Mg, Zn, Al, Pb, Sn и др.) с образованием интерметаллидов. Металлический кальций взаимодействует с водой с образованием кальция гидроксида Са(ОН) 2 и Н 2 . Энергично взаимодействует с большинством кислот, образуя соответствующие соли (например, кальция нитрат, кальция сульфат, кальция фосфаты). Растворяется в жидком аммиаке с образованием тёмно-синего раствора с металлической проводимостью. При испарении аммиака из такого раствора выделяется аммиакат . Постепенно кальций взаимодействует с аммиаком с образованием амида Ca(NH 2) 2 . Образует различные комплексные соединения, наибольшее значение имеют комплексы с кислородсодержащими полидентатными лигандами, например комплексонаты Са.

Биологическая роль . Кальций относится к биогенным элементам. Суточная потребность человека в кальции - около 1 г. В живых организмах ионы кальция участвуют в процессах сокращения мышц, передачи нервных импульсов.

Получение . Металлический кальций получают электролитическим и металлотермическим способами. Электролитический способ основан на электролизе расплавленного хлорида кальция с катодом касания или жидким медно-кальциевым катодом. Из образующегося медно-кальциевого сплава отгоняют кальций при температуре 1000-1080 °С и давлении 13-20 кПа. Металлотермический способ основан на восстановлении кальция из его оксида алюминием или кремнием при 1100-1200 °С. При этом образуется алюминат или силикат кальция, а также газообразный кальций, который затем конденсируют. Мировое производство соединений кальция и материалов, содержащих кальций, около 1 миллиарда т/год (1998).

Применение . Кальций применяют в качестве восстановителя при получении многих металлов (Rb, Cs, Zr, Hf, V и др.). Силициды кальция, а также сплавы кальция с натрием, цинком и другими металлами используют в качестве раскислителей и десульфураторов некоторых сплавов и нефти, для очистки аргона от кислорода и азота, в электровакуумных приборах в качестве поглотителя газов. Хлорид СаСl 2 используют в качестве осушителя в химическом синтезе, гипс применяют в медицине. Кальция силикаты являются основными компонентами цемента.

Лит.: Родякин В. В. Кальций, его соединения и сплавы. М., 1967; Спицын В. И., Мартыненко Л. И. Неорганическая химия. М., 1994. Ч. 2; Неорганическая химия / Под редакцией Ю. Д. Третьякова. М., 2004. Т. 2.

Л. Н. Комиссарова, М. А. Рюмин.

Соединения кальция - известняк, мрамор, гипс (а также известь - продукт известняка) уже в глубокой древности применялись в строительном деле. Вплоть до конца 18 века химики считали известь простым телом. В 1789 году А. Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём - вещества сложные. В 1808 году Дэви, подвергая электролизу с ртутным катодом смесь влажной гашеной извести с окисью ртути, приготовил амальгаму кальция, а отогнав из неё ртуть, получил металл, названный «кальций» (от лат. Calх, род. падеж calcis - известь).

Размещение электронов по орбиталям.

+20Са… |3s 3p 3d | 4s

Кальций называется щелочноземельным металлом, его относят к S - элементам. На внешнем электронном уровне у кальция два электрона, поэтому он даёт соединения: CaO, Ca(OH)2, CaCl2, CaSO4, CaCO3 и т.д. Кальций относится к типичным металлам - он имеет большое сродство к кислороду, восстанавливает почти все металлы из их окислов, образует довольно сильное основание Ca(OH)2.

Кристаллические решётки металлов могут быть различных типов, однако для кальция характерна гранецентрированная кубическая решётка.

Размеры, форму и взаимное расположение кристаллов в металлах излучают металлографическими методами. Наиболее полную оценку структуры металла в этом отношении даёт микроскопический анализ его шлифа. Из испытуемого металла вырезают образец и его плоскость шлифуют, полируют и протравливают специальным раствором (травителем). В результате травления выделяется структура образца, которую рассматривают или фотографируют с помощью металлографического микроскопа.

Кальцый - лёгкий металл (d = 1,55), серебристо-белого цвета. Он более твёрд и плавится при более высокой температуре (851 °С) по сравнению с натрием, который расположен рядом с ним в периодической системе. Это объясняется тем, что на один ион кальция в металле приходится два электрона. Поэтому химическая связь между ионами и электронным газом у него более прочная, чем у натрия. При химических реакциях валентные электроны кальция переходят к атомам других элементов. При этом образуются двухзарядные ионы.

Кальций обладает большой химической активностью по отношению к металлам, особенно к кислороду. На воздухе он окисляется медленнее щелочных металлов, так как окисная плёнка на нём менее проницаема для кислорода. При нагревании кальций сгорает с выделением громадных количеств теплоты:

C водой кальций вступает в реакцию, вытесняя из неё водород и образуя основание:

Са + 2H2O = Ca(OH)2 + H2

Благодаря большой химической активности к кислороду кальций находит некоторое применение для получения редких металлов из их окислов. Окислы металлов нагревают совместно с кальциевой стружкой; в результате реакций получается окись кальция и металл. На этом же свойстве основано применение кальция и его некоторых сплавов для так называемого раскисления металлов. Кальций добавляют в расплавленный металл, и он удаляет следы растворённого кислорода; образующаяся окись кальция всплывает на поверхность металла. Кальций входит в состав некоторых сплавов.

Получают кальций электролизом расплавленного хлорида кальция или алюминотермическим методом. Окись кальция, или гашеная известь, представляет собой порошок белого цвета, плавится она при 2570 °С. Получают её прокаливанием известняка:

СаСО3 = СаО + СО2^

Окись кальция - основной окисел, поэтому она вступает в реакцию с кислотами и ангидридами кислот. С водой она даёт основание - гидроокись кальция:

СаО + H2О = Са(ОН)2

Присоединение воды к окиси кальция, называемое гашением извести, протекает с выделением большого количества теплоты. Часть воды при этом превращается в пар. Гидроокись кальция, или гашеная известь, - вещество белого цвета, немного растворимое в воде. Водный раствор гидроокиси кальция называется известковой водой. Такой раствор обладает довольно сильными щелочными свойствами, так как гидроокись кальция хорошо диссоциирует:

Са(ОН)2 = Са + 2ОН

По сравнению с гидратами окислов щелочных металлов гидроокись кальция - более слабое основание. Объясняется это тем, что ион кальция двухзарядный и более сильно притягивает гидроксильные группы.

Гашеная известь и её раствор, называемый известковой водой, вступают в реакции с кислотами и ангидридами кислот, в том числе и с двуокисью углерода. Известковая вода служит в лабораториях для открытия двуокиси углерода, так как образующийся нерастворимый углекислый кальций вызывает помутнение воды:

Са + 2ОН + СО2 = СаСО3v + Н2О

Однако при длительном пропускании двуокиси углерода раствор снова становится прозрачным. Это объясняется тем, что карбонат кальция превращается в растворимую соль - гидрокарбонат кальция:

СаСО3 + СО2 + Н2О = Са(НСО3)2

В промышленности кальций получают двумя способами:

Нагреванием брикетированной смеси СаО и порошка Аl при 1200 °С в вакууме 0,01 - 0,02 мм. рт. ст.; выделяющиеся по реакции:

6СаО + 2Аl = 3CaO · Al2O3 + 3Ca

Пары кальция кондонсируются на холодной поверхности.

Электролизом расплава СаСl2 и КСl с жидким медно-кальциевым катодом приготовляют сплав Сu - Ca (65% Ca), из которого кальций отгоняют при температуре 950 - 1000 °С в вакууме 0,1 - 0,001 мм.рт.ст.

Разработан также способ получения кальция термической диссоциацией карбида кальция СаС2.

Кальций принадлежит к числу самых распространённых в природе элементов. В земной коре его содержится приблизительно 3% (масс.). Соли кальция образуют в природе большие скопления в виде карбонатов (мел, мрамор), сульфатов (гипс), фосфатов (фосфоритов). Под действием воды и двуокиси углерода карбонаты переходят в раствор в виде гидрокарбонатов и переносятся подземными и речными водами на большие расстояния. При вымывании солей кальция могут образовываться пещеры. За счёт испарения воды или повышения температуры на новом месте могут образовываться отложения карбоната кальция. Так, например, образуются сталактиты и сталагмиты в пещерах.

Растворимые соли кальция и магния обуславливают общую жёсткость воды. Если они присутствуют в воде в небольших количествах, то вода называется мягкой. При большом содержании этих солей (100 - 200 мг. солей кальция - в 1 л. в пересчёте на ионы) вода считается жёсткой. В такой воде мыло плохо пенится, так как соли кальция и магния образуют с ним нерастворимые соединения. В жёсткой воде плохо развариваются пищевые продукты, и при кипячении она даёт на стенках паровых котлов накипь. Накипь плохо проводит теплоту, вызывает увеличение расхода топлива и ускоряет изнашивание стенок котла. Образование накипи - сложный процесс. При нагревании кислые соли угольной кислоты кальция и магния разлагаются и переходят в нерастворимые карбонаты:

Са + 2НСО3 = Н2О + СО2 + СаСО3v

Растворимость сульфата кальция СаSO4 при нагревании также снижается, поэтому он входит в состав накипи.

Жёсткость вызванная присутствием в воде гидрокарбонатов кальция и магния, называется карбонатной или временной, так как она устраняется при кипячении. Помимо карбонатной жёсткости, различают ещё некарбонатную жёсткость, которая зависит от содержания в воде сульфатов и хлоридов кальция и магния. Эти соли не удаляются при кипячении, и поэтому некарбонатную жёсткость называют также постоянной жёсткостью. Карбонатная и некарбонатная жёсткость в сумме даёт общую жёсткость.

Для полного устранения жёсткости воду иногда перегоняют. Для устранения карбонатной жёсткости воду кипятят. Общую жёсткость устраняют или добавлением химических веществ, или при помощи так называемых катионитов. При использовании химического метода растворимые соли кальция и магния переводят в нерастворимые карбонаты, например добавляют известковое молоко и соду:

Са + 2НСО3 + Са + 2ОН = 2Н2О + 2СаСО3v

Са + SO4 + 2Na + CO3 = 2Na + SO4 + CaCO3v

Устранение жёсткости при помощи катионитов - процесс более совершенный. Катиониты - сложные вещества (природные соединения кремния и алюминия, высокомалекулярные органические соединения), состав которых можно выразить формулой Na2R, где R - сложный кислотный остаток. При фильтровании воды через слой катионита происходит обмен ионов (катионов) Na на ионы Са и Mg:

Са + Na2R = 2Na + CaR

Следовательно, ионы Са из раствора переходят в катионит, а ионы Na переходят из катионита в раствор. Для восстановления использованного катионита его промывают раствором поваренной соли. При этом происходит обратный процесс: ионы Са в катионите заменяются на ионы Na:

2Na + 2Cl + CaR = Na2R + Ca + 2Cl

Регенерированный катионит можно снова применять для очистки воды.

В виде чистого металла Са применяют как восстановитель U, Th, Cr, V, Zr, Cs, Rb и некоторых редкоземельных металлов и их соединений. Его используют также для раскисления сталей, бронз и других сплавов, для удаления серы из нефтепродуктов, для обезвоживания органических жидкостей, для очистки аргона от примесей азота и в качества поглотителя газов в электровакуумных приборах. Большое применение в технике получили антификционные материалы системы Pb - Na - Ca, а также сплавы Pb - Ca, служащие для изготовления оболочки электрических кабелей. Сплав Ca - Si - Ca (силикокальций) применяется как раскислитель и дегазатор в производстве качественных сталей.

Кальций - один из биогенных элементов, необходимых для нормального протекания жизненных процессов. Он присутствует во всех тканях и жидкостях животных и растений. Лишь редкие организмы могут развиваться в среде, лишённой Са. У некоторых организмов содержание Са достигает 38% : у человека - 1,4 - 2 %. Клетки растительных и животных организмов нуждаются в строго определённых соотношениях ионов Са, Na и К во внеклеточных средах. Растения получают Са из почвы. По их отношению к Са растения делят на кальцефилов и кальцефобов. Животные получают Са с пищей и водой. Са необходим для образования ряда клеточных структур, поддержания нормальной проницаемости наружных клеточных мембран, для оплодотворения яйцеклеток рыб и других животных, активизации ряда ферментов. Ионы Са передают возбуждение на мышечное волокно, вызывая его сокращение, увеличивают силу сердечных сокращений, повышают фагоцитарную функцию лейкоцитов, активируют систему защитных белков крови, участвуют в её свёртывании. В клетках почти весь Са находится в виде соединений с белками, нуклеиновыми кислотами, фосфолипидами, в комплексах с неорганическими фосфатами и органическими кислотами. В плазме крови человека и высших животных только 20 - 40 % Са может быть связано с белками. У животных, обладающих скелетом, до 97 - 99 % всего Са используется в качестве строительного материала: у беспозвоночных в основном в виде СаСО3 (раковина моллюсков, кораллы), у позвоночных - в виде фосфатов. Многие беспозвоночные запасают Са перед линькой для построения нового скелета или для обеспечения жизненных функций в неблагоприятных условиях. Содержание Са в крови человека и высших животных регулируется гормонами паращитовидных и щитовидной желёз. Важнейшую роль в этих процессах играет витамин D. Всасывание Са происходит в переднем отделе тонкого кишечника. Усвоение Са ухудшается при снижении кислотности в кишечнике и зависит от соотношения Са, фосфора и жира в пище. Оптимальные соотношения Са/Р в коровьем молоке около 1,3 (в картофеле 0,15, в бобах 0,13, в мясе 0,016). При избытке в пище Р и щавелевой кислоты всасывание Са ухудшается. Желчные кислоты ускоряют его всасывание. Оптимальные соотношения Са/жир в пище человека 0,04 - 0,08 г. Са на 1г. жира. Выделение Са происходит главным образом через кишечник. Млекопитающие в период лактации теряют много Са с молоком. При нарушениях фосфорно-кальциевого обмена у молодых животных и детей развивается рахит, у взрослых животных - изменение состава и строения скелета (остеомаляция).

В медицине препаратов Са устраняет нарушения, связанные с недостатком ионов Са в организме (при тетании, спазмофилии, рахите). Препараты Са снижают повышенную чувствительность к аллергенам и используются для лечения аллергических заболеваний (сывороточная болезнь, сонная лихорадка и др.). Препараты Са уменьшают повышенную проницаемость сосудов и оказывают противовоспалительное действие. Их применяют при геморрагическом васкулите, лучевой болезни, воспалительных процессах (пневмания, плеврит и др.) и некоторых кожных заболеваниях. Назначают каккровоостанавливающее средство, для улучшения деятельности сердечной мышцы и усиления действия препаратов наперстянки, как противоядия при отравлении солями магния. Вместе с другими средствами препараты Са применяют для стимулирования родовой деятельности. Хлористый Са вводят через рот и внутривенно. Оссокальцинол (15 % -ная стерильная суспензия особым образом приготовленного костного порошка в персиковом масле) предложен для тканевой терапии.

К препаратам Са относятся также гипс (СаSО4), применяемый в хирургии для гипсовых повязок, и мел (СаСО3), назначаемый внутрь при повышенной кислотности желудочного сока и для приготовления зубного порошка.

История кальция

Кальций был открыт в 1808 году Хэмфри Дэви, который путём электролиза гашеной извести и оксида ртути получил амальгаму кальция, в результате процесса выгонки ртути из которой и остался металл, получивший название кальций. На латыни известь звучит как calx , именно это название и было выбрано английским химиком для открытого вещества.

Кальций является элементом главной подгруппы II группы IV периода периодической системы химических элементов Д.И. Менделеева, имеет атомный номер 20 и атомную массу 40,08. Принятое обозначение - Ca (от латинского - Calcium).

Физические и химические свойства

Кальций является химически активным мягким щелочным металлом серебристо-белого цвета. Из-за взаимодействия с кислородом и углекислым газом поверхность металла тускнеет, поэтому кальций нуждается в особом режиме хранения - в обязательном порядке плотно закрытая ёмкость, в которой металл заливают слоем жидкого парафина или керосина.

Кальций - наиболее известный из необходимых человеку микроэлементов, суточная потребность в нём составляет от 700 до 1500 мг для здорового взрослого человека, но она увеличивается во время беременности и лактации, это нужно учитывать и получать кальций в виде препаратов.

Нахождение в природе

Кальций имеет очень высокую химическую активность, поэтому в свободном (чистом) виде не встречается в природе. Тем не менее, является пятым по распространённости в земной коре, в виде соединений имеется в осадочных (известняк, мел) и горных породах (гранит), много кальция содержит полевой шпат анорит.

В живых организмах распространён достаточно широко, его наличие обнаружено в растениях, организмах животных и человека, где он присутствует, в основном, в составе зубов и костной ткани.

Усвояемость кальция

Препятствием для нормального усвоения кальция из пищевых продуктов является употребление в пищу углеводов в виде сладостей и щелочей, которые нейтрализуют соляную кислоту желудка, необходимую для растворения кальция. Процесс усвоения кальция достаточно сложен, поэтому иногда недостаточно получать его только с пищей, необходим дополнительный приём микроэлемента.

Взаимодействие с другими

Для улучшения всасывания кальция в кишечнике необходим , который имеет свойство облегчать процесс усвоения кальция. При приёме кальция (в виде добавок) в процессе еды происходит блокировка всасывания , но приём препаратов кальция отдельно от пищи никак не влияет на этот процесс.

Почти весь кальций организма (от 1 до 1,5 кг) находится в костях и зубах. Кальций участвует в процессах возбудимости нервной ткани, сократимости мышц, процессах свертываемости крови, входит в состав ядра и мембран клеток, клеточных и тканевых жидкостей, обладает антиаллергическим и противовоспалительным действием, предотвращает ацидоз, активирует ряд ферментов и гормонов. Кальций также участвует в регуляции проницаемости клеточных мембран, оказывает действие, противоположное .

Признаки нехватки кальция

Признаками нехватки кальция в организме являются такие, на первый взгляд, не связанные между собой симптомы:

  • нервозность, ухудшение настроения;
  • учащённое сердцебиение;
  • судороги, онемение конечностей;
  • замедление роста и детей;
  • повышенное артериальное давление;
  • расслоение и ломкость ногтей;
  • боль в суставах, понижение «болевого порога»;
  • обильные менструации.

Причины нехватки кальция

Причинами нехватки кальция могут служить несбалансированные диеты (особенно голодания), низкое содержание кальция в пище, курение и увлечение кофе и кофеинсодержащими напитками, дисбактериоз, болезни почек, щитовидной железы, беременность, периоды лактации и менопаузы.

Избыток кальция, который может возникнуть при чрезмерном употреблении молочных продуктов или неконтролируемом приёме препаратов, характеризуется сильной жаждой, тошнотой, рвотой, потерей аппетита, слабостью и усиленным мочеотделением.

Применение кальция в жизни

Кальций нашёл применение в металлотермическом получении урана, в виде природных соединений используется как сырьё для производства гипса и цемент, как средство дезинфекции (всем известная хлорка ).

Кальций — химический элемент II группы с атомным номером 20 в периодической системе, обозначается символом Ca (лат. Calcium). Кальций - мягкий щелочно-земельный металл серебристо-серого цвета.

20 элемент таблицы МенделееваНазвание элемента происходит от лат. calx (в родительном падеже calcis) — «известь», «мягкий камень». Оно было предложено английским химиком Хэмфри Дэви, в 1808 г. выделившим металлический кальций.
Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад.
Кальций один из наиболее распространенных на Земле элементов. Соединения кальция находятся практически во всех животных и растительных тканях. На его долю приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа).

Нахождение кальция в природе

Из-за высокой химической активности кальций в свободном виде в природе не встречается.
На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Содержание элемента в морской воде — 400 мг/л.

Изотопы

Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %. Ядра кальция содержат магическое число протонов: Z = 20. Изотопы
40
20
Ca20 и
48
20
Ca28 являются двумя из пяти существующих в природе ядер с дважды магическим числом.
Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), испытывает двойной бета-распад с периодом полураспада 1,6·1017 лет.

В горных породах и минералах

Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca.
В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.
Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.
Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвёртое место по числу минералов).

Биологическая роль кальция

Кальций — распространенный макроэлемент в организме растений, животных и человека. В организме человека и других позвоночных большая его часть находится в скелете и зубах. В костях кальций содержится в виде гидроксиапатита. Из различных форм карбоната кальция (извести) состоят «скелеты» большинства групп беспозвоночных (губки, коралловые полипы, моллюски и др.). Ионы кальция участвуют в процессах свертывания крови, а также служат одним из универсальных вторичных посредников внутри клеток и регулируют самые разные внутриклеточные процессы — мышечное сокращение, экзоцитоз, в том числе секрецию гормонов и нейромедиаторов. Концентрация кальция в цитоплазме клеток человека составляет около 10−4 ммоль/л, в межклеточных жидкостях около 2,5 ммоль/л.

Потребность в кальции зависит от возраста. Для взрослых в возрасте 19-50 лет и детей 4-8 лет включительно дневная потребность (RDA) составляет 1000 мг (содержится примерно в 790 мл молока с жирностью 1 %), а для детей в возрасте от 9 до 18 лет включительно — 1300 мг в сутки (содержится примерно в 1030 мл молока жирностью 1 %). В подростковом возрасте потребление достаточного количества кальция очень важно из-за интенсивного роста скелета. Однако по данным исследований в США всего 11 % девочек и 31 % мальчиков в возрасте 12-19 лет достигают своих потребностей. В сбалансированной диете большая часть кальция (около 80 %) поступает в организм ребёнка с молочными продуктами. Оставшийся кальций приходится на зерновые (в том числе цельнозерновой хлеб и гречку), бобовые, апельсины, зелень, орехи. В «молочных» продуктах на основе молочного жира (сливочном масле, сливках, сметане, мороженом на основе сливок) кальция практически не содержится. Чем больше в молочном продукте молочного жира, тем меньше в нём кальция. Всасывание кальция в кишечнике происходит двумя способами: чрезклеточно (трансцеллюлярно) и межклеточно (парацелюллярно). Первый механизм опосредован действием активной формы витамина D (кальцитриола) и её кишечными рецепторами. Он играет большую роль при малом и умеренном потреблении кальция. При большем содержании кальция в диете основную роль начинает играть межклеточная абсорбция, которая связана с большим градиентом концентрации кальция. За счёт чрезклеточного механизма кальций всасывается в большей степени в двенадцатиперстной кишке (из-за наибольшей концентрации там рецепторов в кальцитриолу). За счёт межклеточного пассивного переноса абсорбция кальция наиболее активна во всех трёх отделах тонкого кишечника. Всасыванию кальция парацеллюлярно способствует лактоза (молочный сахар).

Усвоению кальция препятствуют некоторые животные жиры (включая жир коровьего молока и говяжий жир, но не сало) и пальмовое масло. Содержащиеся в таких жирах пальмитиновая и стеариновая жирные кислоты отщепляются при переваривании в кишечнике и в свободном виде прочно связывают кальций, образуя пальмитат кальция и стеарат кальция (нерастворимые мыла). В виде этого мыла со стулом теряется как кальций, так и жир. Этот механизм ответственен за снижение всасывания кальция, снижение минерализации костей и снижение косвенных показателей их прочности у младенцев при использовании детских смесей на основе пальмового масла (пальмового олеина). У таких детей образование кальциевых мыл в кишечнике ассоциируется с уплотнением стула, уменьшением его частоты, а также более частым срыгиванием и коликами.

Концентрация кальция в крови из-за её важности для большого числа жизненно важных процессов точно регулируется, и при правильном питании и достаточном потреблении обезжиренных молочных продуктов и витамина D дефицита не возникает. Длительный дефицит кальция и/или витамина D в диете приводит к увеличению риска остеопороза, а в младенчестве вызывает рахит.

Избыточные дозы кальция и витамина D могут вызвать гиперкальцемию. Максимальная безопасная доза для взрослых в возрасте от 19 до 50 лет включительно составляет 2500 мг в сутки (около 340 г сыра Эдам).

Теплопроводность