Методы анализа лекарственных средств. Методы исследования лекарственных веществ Химические методы определения лекарственных веществ

Муниципальное бюджетное образовательное учреждение

«Школа №129»

Автозаводского района г. Нижнего Новгорода

Научное общество учащихся

Анализ лекарственных препаратов.

Выполнила: Тяпкина Виктория

ученица 10 А класса

Научные руководители:

Новик И.Р. доцент кафедры химии и химического образования НГПУ им. К. Минина; к.п.н.;

Сидорова А.В . учитель химии

МБОУ «Школа № 129».

Нижний Новгород

2016 г.

Содержание

Введение……………………………………………………………………….3

Глава 1.Сведения о лекарственных веществах

    1. История применения лекарственных веществ………………………….5

      Классификация лекарственных препаратов…………………………….8

      Состав и физические свойства лекарственных веществ……………….11

      Физиологические и фармакологические свойства лекарственных веществ…………………………………………………………………….16

      Выводы к 1 главе………………………………………………………….19

Глава 2. Исследования качества лекарственных препаратов

2.1. Качество лекарственных препаратов……………………………………21

2.2. Анализ лекарственных препаратов……………………………………...25

Заключение…………………………………………………………………….31

Библиографический список…………………………………………………..32

Введение

«Лекарство твое в тебе самом, но ты этого не чувствуешь, а болезнь твоя из-за тебя же самого, но ты этого не видишь. Думаешь, что ты – это маленькое тело, а ведь в тебе таится (свернут) огромный мир»

Али ибн Абу Талиб

Лекарственное вещество - индивидуальное химическое соединение или биологическое вещество, обладающее лечебными или профилактическими свойствами.

Человечество использует лекарства еще с древних времен. Так в Китае за 3000 лет до н.э. в качестве лекарств использовали вещества растительного, животного происхождения, минералы. В Индии написана медицинская книга «Аюверда»(6-5 век до н. э),в которой даются сведения о лекарственных растениях. Древнегреческий врач Гиппократ (460-377 гг. до н.э.) в своей медицинской практике использовал свыше 230 лекарственных растений.

В эпоху Средневековья многие лекарственные средства были открыты и внедрены в медицинскую практику благодаря алхимии. В 19 веке вследствие общего прогресса естественных наук арсенал лекарственных веществ существенно расширился. Появились лекарственные вещества, полученные путем химического синтеза (хлороформ, фенол, салициловая кислота, ацетилсалициловая кислота и др.).

В 19 веке начинает развиваться химико-фармацевтическая промышленность, обеспечивающая массовый выпуск лекарственных средств. Лекарственные средства - это вещества или смеси веществ, применяемые для профилактики, диагностики, лечения заболеваний, а также для регуляции других состояний. Современные лекарственные средства разрабатываются в фармацевтических лабораториях на основе растительного, минерального и животного сырья, а также продуктов химического синтеза. Лекарственные средства проходят лабораторные клинические испытания и только после этого применяются в медицинской практике.

В настоящее время создается огромное количество лекарственных веществ, но также много и подделки. По данным Всемирной организации здравоохранения (ВОЗ), наибольший процент подделок приходится на антибиотики - 42%. В нашей стране, по информации Минздрава, фальсифицированные антибиотики составляют сегодня 47 % от общего числа препаратов – подделок, гормональные средства-1%,противогрибковые средства, анальгетики и препараты, влияющие на функцию желудочно -кишечного тракта -7%.

Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье, потому для дальнейших исследований мы взяли именно эти вещества.

Цель исследования: познакомиться со свойствами лекарственных препаратов и установить их качество с помощью химического анализа.

Объект исследования: препарат анальгина, аспирина (ацетилсалициловой кислоты), парацетамола.

Предмет исследования: качественный состав препаратов.

Задачи:

    Изучить литературу (научную и медицинскую) с целью установления состава изучаемых лекарственных веществ, их классификации, химических, физических и фармацевтических свойств.

    Подобрать методику, подходящую для установления качества выбранных лекарственных препаратов в аналитической лаборатории.

    Провести исследование качества лекарственных препаратов по выбранной методике качественного анализа.

    Проанализировать результаты, обработать их и оформить работу.

Гипотеза: проведя анализ качества лекарственных препаратов по выбранным методикам можно определить качество подлинности препаратов и сделать необходимые выводы.

Глава 1. Сведения о лекарственных веществах

    1. История применения лекарственных веществ

Учение о лекарствах является одной из самых древних медицинских дисциплин. По-видимому, лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Употребляя в пищу те или иные растения, наблюдая за животными, поедающими растения, человек постепенно знакомился со свойствами растений, в том числе и с их лечебным действием. О том, что первые лекарства были в основном растительного происхождения, мы можем судить по наиболее древним из дошедших до нас образцов письменности. В одном из египетских папирусов (XVII век до н. э.) описывается ряд растительных лекарственных средств; некоторые из них применяются и в настоящее время (например, масло касторовое и др.).

Известно, что в Древней Греции Гиппократ (III век до н. э.) использовал для лечения заболеваний различные лекарственные растения. При этом он рекомендовал пользоваться целыми, необработанными растениями, считая, что только в этом случае они сохраняют свою целебную силу.Позднее медики пришли к выводу, что в лекарственных растениях содержатся действующие начала, которые можно отделить от ненужных, балластных веществ. Во II веке н. э. Римский врач Клавдий Гален широко применял различные извлечения (вытяжки) из лекарственных растений. Для извлечения действующих начал из растений он использовал вина, уксусы. Спиртовые вытяжки из лекарственных растений применяют и в настоящее время. Это настойки и экстракты. В память о Галене настойки и экстракты относят к так называемым галеновым препаратам.

Большое количество лекарственных средств растительного происхождения упоминается в сочинениях крупнейшего таджикского медика эпохи Средневековья Абу Али Ибн-Сины (Авиценны), жившего в XI веке. Некоторые из этих средств используются и в настоящее время: камфора, препараты белены, ревеня, александрийского листа, спорыньи и др. Кроме лекарств растительного происхождения, медики применяли некоторые неорганические лекарственные вещества. Впервые вещества неорганической природы стал широко использовать в медицинской практике Парацельс (XV- XVI век). Он родился и получил образование в Швейцарии, был профессором в Базеле, а затем переселился в Зальцбург. Парацельс ввел в медицину многие лекарственные средства неорганического происхождения: соединения железа, ртути, свинца, меди, мышьяка, серы, сурьмы. Препараты указанных элементов назначали больным в больших дозах, и часто одновременно с лечебным эффектом они проявляли токсическое действие: вызывали рвоту, понос, слюнотечение и т. д. Это, однако, вполне соответствовало представлениям того времени о лекарственной терапии. Следует отметить, что в медицине долго удерживалось представление о болезни как о чем-то вошедшем в организм больного извне. Для «изгнания» болезни назначали вещества, вызывающие рвоту, понос, слюнотечение, обильное потоотделение, применяли массивные кровопускания. Одним из первых медиков, отказавшихся от лечения массивными дозами лекарств, был Ганеман (1755-1843). Он родился и получил медицинское образование в Германии а затем работал врачом в Вене. Ганеман обратил внимание на то, что больные, получавшие лекарства в больших дозах выздоравливают реже, чем больные, которые такого лечения не получали, поэтому он предложил резко уменьшить дозировку лекарств. Не имея для этого никаких фактических данных, Ганеман утверждал, что терапевтическое действие лекарств увеличивается с уменьшением дозы. Следуя этому принципу, он назначал больным лекарственные средства в очень малых дозах. Как показывает экспериментальная проверка, в этих случаях вещества не оказывают никакого фармакологического действия. Согласно другому принципу, провозглашенному Ганеманом и также совершенно необоснованному, всякое лекарственное вещество вызывает «лекарственную болезнь». Если «лекарственная болезнь» сходна с «натуральной болезнью», она вытесняет последнюю. Учение Ганемана получило название «гомеопатия» (homoios - одинаковый; pathos - страдание, т. е. лечение подобного подобным), а последователи Ганемана стали называться гомеопатами. За прошедший со времени Ганемана период гомеопатия мало изменилась. Принципы гомеопатического лечения не обоснованы экспериментально. Проверки гомеопатического метода лечения в клинике, проводимые при участии гомеопатов, не показали его существенного терапевтического эффекта.

Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ. В 1806 г. из опия был выделен морфин. В 1818 г. выделен стрихнин, в 1820 г. - кофеин, в 1832 г. - атропин, в последующие годы - папаверин, пилокарпин, кокаин и др. Всего к концу XIX века было выделено около 30 подобных веществ (алкалоидов растений). Выделение чистых действующих начал растений в изолированном виде позволило точно определить их свойства. Этому способствовало появление экспериментальных методов исследования.

Первые фармакологические эксперименты были проведены физиологами. В 1819 г. известный французский физиолог Ф. Мажанди впервые исследовал на лягушке действие стрихнина. В 1856 г. другой французский физиолог Клод Бернар провел на лягушке анализ действия кураре. Почти одновременно и независимо от Клода Бернара аналогичные эксперименты были проведены в Петербурге известным русским судебным медиком и фармакологом Е. В. Пеликаном.

1.2. Классификация лечебных препаратов

Бурное развитие фармацевтической промышленности привело к созданию огромного числа лекарственных средств (в настоящее время сотни тысяч). Даже в специальной литературе появляются такие выражения, как "лавина" лекарственных препаратов или "лекарственные джунгли". Естественно, сложившаяся ситуация весьма затрудняет изучение лекарственных средств и их рациональное применение. Возникает острая необходимость в разработке классификации лекарственных средств, которая помогла бы врачам ориентироваться в массе препаратов и выбирать оптимальное для больного средство.

Лекарственный препарат - фармакологическое средство, разрешенное уполномоченным на то органом соответствующей страны в установленном порядке для применения с целью лечения, предупреждения или диагностики заболевания у человека или животного.

Лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение (противоопухолевые, антиангинальные, противомикробные средства);

фармакологические средства (вазодилаторы, антикоагументы, диуретики);

химические соединения (алкалоиды, стероиды, гликоиды, бензодиазенины).

Классификация лекарственных средств:

I . Средства, действующие на ЦНС (центральную нервную систему).

1 . Средства для наркоза;

2. Снотворные средства;

3. Психотропные препараты;

4. Противосудорожные (противоэпилептические средства);

5. Средства для лечения паркинсонизма;

6. Анальгезирующие средства и нестероидные противовоспалительные препараты;

7. Рвотные и противорвотные препараты.

II. Лекарственные средства, действующие на периферическую НС (нервную систему).

1. Средства, действующие на периферические холинергические процессы;

2. Средства, действующие на периферические адренергические процессы;

3. Дофалин и дофаминерические препараты;

4. Гистамин и антигистаминные препараты;

5. Серотинин, серотониноподобные и антисеротониновые препараты.

III . Средства, действующие преимущественно в области чувствительных нервных окончаний.

1. Местноанестезирующие препараты;

2. Обвалакивающие и адсорбирующие средства;

3. Вяжущие средства;

4. Средства, действие которых связано преимущественно с раздражением нервных окончаний слизистых оболочек и кожи;

5. Отхаркивающие средства;

6. Слабительные средства.

IV . Средства, действующие на ССС (сердечно-сосудистую систему).

1. Сердечные гликозиды;

2. Антиаритмические препараты;

3. Сосудорасширяющие и спазмолитические средства;

4. Антиангинальные препараты;

5. Препараты, улучшающие мозговое кровообращение;

6. Антигипертензивные средства;

7. Спазмолитические средства разных групп;

8. Вещества, влияющие на ангиотензиновую систему.

V. Средства, усиливающие выделительную функцию почек.

1. Диуретические средства;

2. Средства, способствующие выведения мочевой кислоты и удалению мочевых конкрементов.

VI. Желчегонные средства.

VII. Средства, влияющие на мускулатуру матки (маточные средства).

1. Средства, стимулирующие мускулатуру матки;

2. Средства, расслабляющие мускулатуру матки (токолитики).

VIII. Средства, влияющие на процессы обмена веществ.

1. Гормоны, их аналоги и антигормональные препараты;

2. Витамины и их аналоги;

3. Ферментны препараты и вещества с антиферментной активностью;

4. Средства, влияющие на свертывание крови;

5. Препараты гипохолестеринемического и гиполипопротеинемического действия;

6. Аминокислоты;

7. Плазмозамещающие растворы и средства для парентерального питания;

8. Препараты, применяемые для коррекции кислотно-щелочного и ионного равновесия в организме;

9. Разные препараты, стимулирующие метаболические процессы.

IX. Лекарственные препараты, модулирующие процессы иммунитете ("иммуномодуляторы").

1. Препараты, стимулирующие иммунологические процессы;

2. Иммунодепрессивные препараты (иммуносупресоры).

X. Препараты различных фармакологических групп.

1. Анорексигенные вещества (вещества, угнетающие аппетит);

2. Специфические антидоты, комплексоны;

3. Препараты для профилактики и лечения синдрома лучевой болезни;

4. Фотосенсибилизирующие препараты;

5. Специальные средства для лечения алкоголизма.

1. Химотерапевтические средства;

2. Антисептические средства.

XII. Препараты, применяемые для лечения злокачественных новоообразований.

1. Химотерапевтические средства.

2. Ферментные препараты, применяемые для лечения онкологических заболеваний;

3. Гормональные препараты и ингибиторы образования гормонов, применяемые преимущественно для лечения опухолей.

    1. Состав и физические свойства лекарственных веществ

В работе мы решили исследовать свойства лекарственных веществ, входящих в состав наиболее часто применяемых лекарственных препаратов и являющихся обязательными любой домашней аптечки.

Анальгин

В переводе, слово "анальгин" означает отсутствие боли. Трудно найти человека, который не принимал анальгин. Анальгин - главный препарат в группе ненаркотических анальгетиков - препаратов, способных уменьшать боль без влияния на психику. Уменьшение боли - не единственный фармакологический эффект анальгина. Способность уменьшать выраженность воспалительных процессов и способность снижать повышенную температуру тела - не менее ценны (жаропонижающий и противовоспалительный эффект). Тем не менее, анальгин редко используют с противовоспалительной целью, для этого есть куда более эффективные средства. А вот при лихорадке и боли он в самый раз.

Метамизол (анальгин) в течение многих десятилетий был в нашей стране препаратом скорой помощи, а не средством для лечения хронических заболеваний. Таким он и должен оставаться.

Анальгин синтезирован в 1920 г. в поисках легко растворимой формы амидопирина. Это третье основное направление в разработке болеутоляющих средств. Анальгин, как утверждает статистика, один из самых любимых препаратов, а главное - всем доступен. Хотя на самом деле ему совсем немного лет - всего около 80. Анальгин специалисты разработали специально, чтобы бороться с сильной болью. И действительно, немало людей он избавил от мучений. Применялся он в качестве доступного обезболивающего средства, поскольку широкого ассортимента средств против боли в то время не было. Конечно, использовались наркотические анальгетики, но медицина того времени уже располагала достаточными данными о , и эта группа средств применялась только в соответствующих случаях. Препарат Анальгин имеет большую популярность в медицинской практике. Уже одно название говорит о том, Анальгин от чего помогает и в каких случаях применяется. Ведь в переводе оно означает "отсутствие боли". Анальгин относится к группе безнаркотических анальгетиков, - т.е. препаратов, способных уменьшать боль без влияния на психику.

В клиническую практику анальгин (метамизол натрия) был впервые внедрен в Германии в 1922 году. Анальгин стал незаменимым для госпиталей Германии во время Второй Мировой войны. В течение многих лет он оставался очень популярным лекарственным средством, но эта популярность имела и обратную сторону: широкое и практически бесконтрольное его применение как безрецептурного препарата привело в 70-х гг. прошлого века к смертельным исходам от агранулоцитоза (иммунное заболевание крови) и шока. Это привело к тому, что анальгин был запрещен в ряде стран, в то время как в других он оставался доступным как безрецептурное средство. Риск серьезных побочных эффектов при использовании комбинированных препаратов, содержащих метамизол, выше, чем при приеме "чистого" анальгина. Поэтому в большинстве стран подобные средства были изъяты из обращения.

Торговое наименование: а нальгин.
Международное наименование: Метамизол натрий (Metamizole sodium).
Групповая принадлежность: Анальгетическое ненаркотическое средство.
Лекарственная форма: капсулы, раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки, таблетки [для детей].

Химический состав и физико-химические свойства анальгина

Анальгин. Analginum.

Метамизол натрий.Metamizolum natricum

Химическое название: 1-фенил–2,3-диметил-4–метил-аминопиразолон-5-N-метан - сульфат натрия

Брутто-формула: C 13 H 18 N 3 NaO 5 S

Рис.1

Внешний вид: бесцветные игольчатые кристаллы горьковатого вкуса без запаха.

Парацетамол

В 1877 году Хармон Норзроп Морз синтезировал парацетамол в Университете Джонса Хопкинса в реакции восстановления р-нитрофенола оловом в ледяной уксусной кислоте, но только в 1887 году клинический фармаколог Джозеф фон Меринг испытал парацетамол на пациентах. В 1893 году фон Меринг опубликовал статью, где сообщалось о результатах клинического применения парацетамола и фенацетина, другого производного анилина. Фон Меринг утверждал, что, в отличие от фенацетина, парацетамол обладает некоторой способностью вызывать метгемоглобинемию. Парацетамол затем был быстро отвергнут в пользу фенацетина. Продажи фенацетина начала Bayer как лидирующая в то время фармацевтическая компания. Внедрённый в медицину Генрихом Дрезером в 1899 году, фенацетин был популярен на протяжении многих десятилетий, особенно в широко рекламируемой безрецептурной «микстуре от головной боли», обычно содержащей фенацетин, аминопириновое производное аспирина, кофеин, а иногда и барбитураты.

Торговое название: Парацетамол

Международное название: парацетамол

Групповая принадлежность: анальгезирующее ненаркотическое средство.

Лекарственная форма: таблетки

Химический состав и физико-химические свойства парацетамола

Парацетамол. Paracetamolum.

Брутто - формула: C 8 H 9 NO 2 ,

Химическое название: N-(4-Гидроксифенил) ацетамид.

Внешний вид: белый или белый с кремовым или Рис.2 розовым оттенком кристаллический порошок. Легко оенш679к969 растворим в спирте, нерастворим в воде.

Аспирин (ацетисалициловая кислота)

Аспирин впервые был синтезирован в 1869 году. Это один из самых известных и широко использующихся препаратов. Оказалось, что история аспирина является типичной для многих других лекарств. Ещё в 400 году до нашей эры греческий врач Гиппократ рекомендовал пациентам для избавления от боли жевать ивовую кору. Он, конечно, не мог знать о химическом составе обезболивающих компонентов, однако это были производные ацетилсалициловой кислоты (химики выяснили это лишь двумя тысячелетиями позже). В 1890 г. Ф.Хоффман, работавший в немецкой фирме «Байер», разработал метод синтеза ацетилсалициловой кислоты – основы аспирина. На рынок аспирин был выпущен в 1899 году, а с 1915 года стал продаваться без рецептов. Механизм обезболивающего действия был открыт лишь в 1970 –ых годах. Последние годы аспирин стал средством для профилактики сердечнососудистых заболеваний.

Торговое название : Аспирин.

Международное название : ацетилсалициловая кислота.

Групповая принадлежность : нестероидный противовоспалительный препарат .

Лекарственная форма: таблетки.

Химический состав и физико-химические свойства аспирина

Ацетилсалициловая кислота. Acidum acetylsalicylicum

Брутто – формула: С 9 Н 8 О 4

Химическое название: 2-ацетокси-бензойная кислота.

Внешний вид : ч истое вещество представляет Рис.3 собой белый кристаллический порошок, почти не обладающий словарь запахом, кислый на вкус.

Дибазол

Дибазол создавался в Советском Союзе еще в середине прошлого века. Впервые данное вещество было отмечено в 1946 г. как наиболее активная в физиологическом плане соль Бензимидазола. В ходе проводившихся опытов на лабораторных животных была замечена способность нового вещества улучшать передачу нервных импульсов в спинном мозге. Эта способность подтвердилась в ходе клинических испытаний, и препарат в начале 50-х г. был внедрен в клиническую практику для лечения заболеваний спинного мозга, в частности – полиомиелита. Сейчас используется как средство для укрепления иммунитета, улучшения метаболизма и повышения выносливости.

Торговое название: Дибазол.

Международное название :Дибазол. 2-ое:Бензилбензимидазола гидрохлорид.

Групповая принадлежность : препарат группы периферических вазодилататоров.

Лекарственная форма : раствор для внутривенного и внутримышечного введения, суппозитории ректальные [для детей], таблетки.

Химический состав и физико-химические свойства: Дибазол

Хорошо растворяется в воде, но плохо растворяется в спирте.

Брутто-формула : C 14 H 12 N 2 .

Химическое название : 2-(Фенилметил)-1H-бензимидазол.

Внешний вид : производное Бензимидазола,

Рис.4 представляет собой белый, бело- желтый или

светло-серый кристаллический порошок.

    1. Физиологическое и фармакологическое действие лекарственных препаратов

Анальгин.

Фармакологические свойства:

Анальгин относится к группе нестероидных противовоспалительных препаратов, эффективность которого обусловлена активностью метамизола натрия, который:

    Блокирует прохождение болевых импульсов по пучкам Голля и Бурдаха;

    Значительно повышает теплоотдачу, что обусловливает целесообразность использования при высокой температуре Анальгина;

    Способствует увеличению порога возбудимости таламических центров болевой чувствительности;

    Оказывает слабовыраженное противовоспалительное действие;

    Способствует некоторому спазмолитическому эффекту.

Активность Анальгина развивается примерно через 20 минут после приема, достигая максимума через 2 часа.

Показания к применению

Согласно инструкции, Анальгин применяется для устранения болевого синдрома, провоцируемого такими заболеваниями, как :

    Артралгия;

    Кишечная, желчная и почечная колика;

    Ожоги и травмы;

    Опоясывающий лишай;

    Невралгия;

    Декомпрессионная болезнь;

    Миалгия;

    Альгодисменорея и др.

Эффективным является использование Анальгина для устранения зубной и головной боли, а также послеоперационного болевого синдрома. Кроме того, препарат применяется при лихорадочном синдроме, вызванном укусами насекомых, инфекционно-воспалительными заболеваниями или посттрансфузионными осложнениями.

Для устранения воспалительного процесса и снижения температуры Анальгин применяется редко, так как для этого существуют более эффективные средства.

Парацетамол

Фармакологические свойства:

парацетамол быстро и почти полностью абсорбируется из желудочно-кишечного тракта. Связывается с белками плазмы на 15 %. Парацетамол проникает через гематоэнцефалический барьер. Менее 1 % от принятой кормящей матерью дозы парацетамола проникает в грудное молоко. Парацетамол подвергается метаболизму в печени и выделяется с мочой, главным образом, в виде глюкуронидов и сульфированных конъюгатов, менее 5 % выделяется в неизменном виде с мочой.

Показания к применению

    для быстрого облегчения головной боли, включая мигренозную боль;

    зубной боли;

    невралгии;

    мышечной и ревматической боли;

    а также при альгодисменореях, боли при травмах, ожогах;

    для снижения повышенной температуры при простудных заболеваниях и гриппе.

Аспирин

Фармакологические свойства:

Ацетилсалициловая кислота (АСК) обладает обезболивающим, жаропонижающим и противовоспалительным действием, что обусловлено ингибированием энзимов циклоксигеназ, участвующих в синтезе простагландинов.

АСК в диапазоне доз от 0,3 до 1,0 г применяется для снижения температуры при таких заболеваниях, как простуда и , и для облегчения суставных и мышечных болей.
АСК ингибирует агрегацию тромбоцитов, блокируя синтез тромбоксана А
2 в тромбоцитах.

Показания к применению

    для симптоматического облегчения головной боли;

    зубной боли;

    боли в горле;

    боли в мышцах и суставах;

    боли в спине;

    повышенная температура тела при простудных и других инфекционно-воспалительных заболеваниях (у взрослых и детей старше 15 лет)

Дибазол

Фармакологические свойства

Вазодилатирующее средство; обладает гипотензивным, сосудорасширяющим действием, стимулирует функцию спинного мозга, обладает умеренной иммуностимулирующей активностью. Оказывает непосредственное спазмолитическое действие на гладкие мышцы кровеносных сосудов и внутренних органов. Облегчает синаптическую передачу в спинном мозге. Вызывает расширение (непродолжительное) мозговых сосудов и поэтому особенно показан при формах артериальной гипертензии, обусловленных хронической гипоксией мозга из-за местных нарушений кровообращения (склероз церебральных артерий). В печени дибазол подвергается метаболическим превращениям путем метилирования и карбоксиэтилирования с образованием двух метаболитов. Преимущественно выводится почками, и в меньшей степени – через кишечник.

Показания к применению

    Различные состояния, сопровождающиеся артериальной гипертензией, в т.ч. и гипертоническая болезнь, гипертонические кризы;

    Спазм гладкой мускулатуры внутренних органов (кишечная, печеночная, почечная колика);

    Остаточные явления полиомиелита, паралич лицевого нерва, полиневриты;

    Профилактика вирусных инфекционных заболеваний;

    Повышение устойчивости организма к внешним неблагоприятным воздействиям.

    1. Выводы к главе 1

1) Выявлено, что учение о лекарствах является одной из самых древних медицинских дисциплин. Лекарственная терапия в самой примитивной форме существовала уже в первобытном человеческом обществе. Первые лекарства были в основном растительного происхождения. Возникновение научной фармакологии относится к XIX веку, когда из растений впервые были выделены отдельные действующие начала в чистом виде, получены первые синтетические соединения и когда благодаря развитию экспериментальных методов стало возможным экспериментальное изучение фармакологических свойств лекарственных веществ.

2) Установлено, что лекарственные средства можно классифицировать по следующим принципам:

терапевтическое применение;

фармакологические средства;

химические соединения.

3) Рассмотрен химический состав и физические свойства препаратов анальгина, парацетамола и аспирина, являющихся незаменимыми в домашней аптечке. Установлено что лекарственные вещества данных препаратов представляют собой сложные производные ароматических углеводородов и аминов.

4) Показаны фармакологические свойства исследуемых препаратов, а также показания к их применению и физиологическое действие на организм. Чаще всего данные лекарственные вещества используются как жаропонижающие и болеутоляющие.

Глава 2. Практическая часть. Исследование качества лекарственных препаратов

2.1. Качество лекарственных препаратов

В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

Понятия «фальсификат», «контрафакт» и «подделка» юридически имеют определенные различия, но для обычного гражданина они идентичны.. Под поддельным понимается лекарственное средство, произведенное с изменением его состава, при сохранении внешнего вида, и часто сопровождаемое ложной информацией о его составе. Контрафактным считается лекарственное средство, производство и дальнейшая продажа которого осуществляется под чужими индивидуальными признаками (товарным знаком, наименованием или местом происхождения) без разрешения патентодержателя, что является нарушением прав интеллектуальной собственности.

Фальсифицированное лекарственное средство часто расценивается как поддельное и контрафактное. В Российской Федерации фальсифицированным считается лекарственное средство, которое признается таковым Росздравнадзором после тщательной проверки с опубликованием соответствующей информации на сайте Росздравнадзора. Со дня публикации обращение ФЛС должно быть прекращено с изъятием из торговой сети и помещением вкарантинную зону отдельно от других лекарств. Перемещение данного ФЛС является нарушением.

Фальсификация лекарств считается четвертым злом здравоохранения после малярии, СПИДа и курения. В своем большинстве фальсификаты не соответствуют по качеству, эффективности или побочным действиям оригинальным препаратам, нанося непоправимый вред здоровью больного человека; производятся и распространяются без контроля соответствующих органов, причиняя огромный финансовый вред законным производителям лекарств и государству. Смерть от ФЛС входит в первую десятку причин гибели людей.

Специалисты выделяют четыре основных типа поддельных лекарств.

1-й тип - «лекарства-пустышки». В этих «лекарствах», как правило, отсутствуют основные лечебные компоненты. Принимающие их не ощущают разницы и даже на ряд пациентов прием «пустышек» может за счет плацебо- эффекта оказывать позитивное воздействие.

2-й тип - «лекарства-имитаторы». В таких «лекарствах» используются более дешевые и менее эффективные, чем в подлинном лекарственном средстве активные компоненты. Опасность заключается в недостаточной концентрации активных веществ, в которых нуждаются пациенты.

3-й тип - «измененные лекарства». В этих «лекарствах» содержится такое же активное вещество, как и в оригинальном средстве, но в больших или меньших количествах. Естественно, что применение подобных средств небезопасно, потому что может привести к усилению побочных эффектов (особенно при передозировке).

4-й тип - «лекарства-копии». Они относятся к наиболее распространенным в России типам фальсифицированных средств (до 90 % от общего числа подделок), выпускаемым обычно подпольными производствами и по тем или иным каналам попадающим в партии легальных средств. Эти препараты содержат такие же активные компоненты, как легальные средства, но при этом отсутствуют гарантии качества лежащих в их основе субстанций, соблюдения норм технологических процессов производства и пр. Следовательно, повышен риск последствий приема подобных препаратов

Правонарушители привлекаются к административной ответственности, предусмотренной ст. 14.1 КоАП РФ, либо к уголовной, ответственность за которое, в связи с отсутствием в уголовном кодексе ответственности за фальсификацию, наступает по нескольким составам преступлений и в основном квалифицируется как мошенничество (ст. 159 УК РФ) и незаконное использование товарного знака (ст. 180 УК РФ).

Федеральный закон «О лекарственных средствах» дает правовое основание для изъятия и уничтожения ФЛС как производимых в России и 15ввозимых из-за рубежа, так и находящихся в обращении на отечественном фармрынке.

Часть 9 статьи 20, устанавливает запрет на ввоз на территорию России лекарственных средств, являющихся подделками, незаконными копиями или фальсифицированными лекарственными средствами. Таможенные органы обязаны конфисковать и уничтожить их в случае обнаружения.

Ст. 31, устанавливает запрет на продажу лекарственных, пришедших в негодность, имеющих истекший срок годности или признанных фальсифицированными. Они также подлежат уничтожению. Минздрав России своим приказом от 15.12.2002 г. № 382 утвердил Инструкцию о порядке уничтожения лекарственных средств, пришедших в негодность, лекарственных средств с истекшим сроком годности и лекарственных средств, являющихся подделками или незаконными копиями. Но в инструкцию до сих пор не внесли изменения в соответствии с дополнениями в ФЗ «О лекарственных средствах» от 2004 г. о фальсифицированных и недоброкачественных лекарственных средств, где теперь дано определение и указано на запрет их обращения и изъятие из оборота, а также предложено государственным органам привести нормативные правовые акты в соответствие с данным законом.

Росздравнадзор издал письмо № 01И-92/06 от 08.02.2006 «Об организации работы территориальных Управлений Росздравнадзора с информацией о недоброкачественных и фальсифицированных лекарственных средствах», которое противоречит правовым нормам Закона о лекарственных средствах и сводит на нет борьбу с фальсификатом. Закон предписывает изымать из обращения и уничтожать фальсифицированные лекарственные средства, а Росздравнадзор (абзац 4 п. 10) предлагает территориальным Управлениям контролировать изъятие из обращения и уничтожение фальсифицированных лекарственных средств. Предлагая 16 осуществлять контроль только за возвратом собственнику или владельцу для дальнейшего уничтожения, Росздравнадзор разрешает продолжить обращение фальсифицированных лекарственных средств и вернуть их собственнику, то есть самому преступнику-фальсификатору, что грубо нарушает Закон и Инструкцию по уничтожению. При этом часто идут ссылки на Федеральный закон от 27.12.2002 г. № 184-ФЗ «О техническом регулировании», в ст. 36-38 которого установлен порядок возврата изготовителю либо продавцу продукции, не соответствующей требованиям технического регламента. Однако необходимо иметь в виду, что этот порядок не распространяется на фальсифицированные лекарственные средства, которые производятся без соблюдения технического регламента, неизвестно кем и где.

С 1 января 2008 г. в соответствии со ст. 2 Федерального закона от 18.12.2006 г. № 231-ФЗ «О введении в действие части четвертой Гражданского кодекса Российской Федерации» вступило в силу новое законодательство о защите интеллектуальной собственности, к объектам которой относятся средства индивидуализации, в том числе и товарные знаки, с помощью которых производители лекарственных средств, защищают права на свою продукцию. В Четвертой части Гражданского Кодекса РФ (ч. 4 ст. 1252) дано определение контрафактным материальным носителям результатов интеллектуальной деятельности и средств индивидуализации

Фармацевтическая отрасль России сегодня нуждается в тотальном научно-техническом перевооружении, так как ее основные фонды изношены. Необходимо внедрение новых стандартов, в том числе и ГОСТ Р 52249- 2004, без которых производство высококачественных лекарственных средств не возможно.

2.2. Качество лекарственных препаратов.

Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из методических разработок для учащихся в медицинских колледжах и в Интернете).

Реакции с препаратом анальгин.

Определение растворимости анальгина.

1 .Растворили 0,5 таблетки анальгина (0,25 г) в 5 мл воды, а вторую половину таблетки в 5 мл этилового спирта.


Рис.5 Взвешивание препарата Рис.6 Измельчение препарата

Вывод: анальгин хорошо растворился в воде, однако практически не растворился в спирте.

Определение наличия группы СН 2 SO 3 Na .

    Нагрели 0,25 г препарата (полтаблетки) в 8 мл разбавленной соляной кислоты.

Рис.7 Нагревание препарата

Обнаружили: сначала запах сернистого ангидрида, затем формальдегида.

Вывод: данная реакция позволяет доказать, что в состав анальгина входит группа формальдегидсульфоната.

    Определение свойств хамелеона

1 мл полученного раствора анальгина добавляли 3-4 капли 10 % раствора хлорида железа (III ). При взаимодействии анальгина с Fe 3+ образуются продукты окисления,

окрашенные в синий цвет, который потом переходит в темно-зеленый, а далее оранжевый, т.е. проявляет свойства хамелеона. Это означает, что препарат качественный.

Для сравнения мы взяли препараты с разными сроками годности и выявили, с помощью указанной выше методики качество препаратов.


Рис.8 Появление свойства хамелеона

Рис.9 Сравнение образцов препаратов

Вывод: реакция с препаратом более позднего срока производства протекает по принципу хамелеона, что свидетельствует о его качестве. А препарат более раннего производства не проявил это свойство, из этого следует, что данный препарат использовать по назначению нельзя.

4.Реакция анальгина с гидроперитом.(«Дымовая шашка»)

реакция идет сразу по двум местам: по сульфогруппе и метиламиниловой группировке. Соответственно, по сульфогруппе может образоываться сероводород, а также вода и кислород

-SO3 + 2H2O2 = H2S + H2O + 3O2.

Образующаяся вода приводит к частичному гидролизу по связи С - N и отщепляется метиламин, и тоже образуется вода и кислород:

-N(CH3) + H2O2 = H2NCH3 + H2O +1/2 O2

И наконец становится понятным, что за дым получается в этой реакции:

Сероводород взаимодействует с метиламином и получается гидросульфид метиламмония:

H2NCH3 + H2S = HS.

И взвесь его мелких кристалликов в воздухе и создает визуальное ощущение "дыма".

Рис. 10 Реакция анальгина с гидроперитом

Реакции с препаратом парацетамол.

Определение уксусной кислоты


Рис.11 Нагревание раствора парацетамола с соляной кислотой Рис.12 Охлаждение смеси

Вывод: появившийся запах уксусной кислоты означает, что данный препарат действительно является парацетамолом.

Определение фенолпроизводного парацетамола.

    К 1 мл раствора парацетамола добавили несколько капель 10 % -ного раствора хлорида железа (III ).

Рис.13 Появление синего окрашивания

Наблюдали: синее окрашивание, свидетельствует о наличии в составе вещества фенолпроизводного.

    0,05 г вещества вскипятили с 2 мл разбавленной соляной кислоты в течение 1 минуты и прибавили 1 каплю раствора дихромата калия.


Рис.14 Кипячение с соляной кислотой Рис.15 Окисление дихроматом калия

Наблюдали: появление сине-фиолетового окрашивания ,не переходящее в красное.

Вывод: в ходе проведенных реакций был доказан качественный состав препарата парацетамола, и установлено, что он является производным анилина.

Реакции с препаратом аспирин.

Для проведения опыта мы использовали таблетки аспирина изготовленные производственной фармацевтической фабрикой «Фармстандарт-Томскхимфарм». Годен до мая 2016 года.

Определение растворимости аспирина в этаноле.

Внесли в пробирки по 0,1 г лекарственных препаратов и добавили 10 мл этанола. При этом наблюдали частичную растворимость аспирина. Нагрели на спиртовке пробирки с веществами. Сравнили растворимость лекарственных препаратов в воде и этаноле.

Вывод: Результаты эксперимента показали, что аспирин лучше растворяется в этаноле, чем в воде, но выпадает в осадок в виде игольчатых кристаллов. Поэтому недопустимо применение аспирина совместно с этанолом. Следует сделать вывод о недопустимости применения алкогольсодержащих лекарств совместно с аспирином, а тем более с алкоголем.

Определение фенолпроизводного в аспирине.

В стакане смешали 0,5 г ацетилсалициловой кислоты, 5 мл раствора гидроксида натрия и прокипятили смесь в течение 3 минут. Реакционную смесь охладили и подкислили разбавленным раствором серной кислоты до выпадения белого кристаллического осадка. Отфильтровали осадок, часть его перенесли в пробирку, прилили к нему 1 мл дистиллированной воды и добавили 2-3 капли раствора хлорида железа.

Гидролиз сложноэфирной связи приводит к образованию фенолпроизводного, которое с хлоридом железа (3) дает фиолетовое окрашивание.


Рис.16 Кипячение смеси аспирина Рис.17 Окисление раствором Рис.18 Качественная реакция

с гидроксидом натрия серной кислоты на фенолпроизводное

Вывод: при гидролизе аспирина образуется фенолпроизводное, которое дает фиолетовое окрашивание.

Фенолпроизводное - это очень опасное для здоровья человека вещество, которое влияет на появление побочных эффектов на организм человека, при приеме ацетилсалициловой кислоты. Поэтому необходимо строго соблюдать инструкции по применению(данный факт упоминался еще в 19 веке).

2.3. Выводы к главе 2

1) Установлено, что в настоящее время создается огромное количество лекарственных веществ, но также много подделки. Тема качества лекарственных препаратов всегда будет актуальна, так как от потребления этих веществ зависит наше здоровье. Качество лекарственных препаратов определено ГОСТ Р 52249 – 09. В определении Всемирной организации здравоохранения под фальсифицированным (контрафактным) лекарственным средством (ФЛС) подразумевается продукт, преднамеренно и противоправно снабженный этикеткой, неверно указывающей подлинность препарата и (или) изготовителя.

2) Для анализа лекарственных препаратов нами были использованы методики определения наличия в них аминогрупп (лигниновая проба) фенольный гидроксил, гетероциклов, карбоксильную группу и другие. (Методики мы взяли из учебно-методического пособия для студентов химических и биологических специальностей).

3) В ходе проведенного эксперимента был доказан качественный состав препаратов анальгина, дибазола, парацетамола, аспирина и количественный состав анальгина. Результаты и более подробные выводы приведены в тексте работы в главе 2.

Заключение

Целью данного исследования было познакомиться со свойствами некоторых лекарственных веществ и установить их качество с помощью химического анализа.

Я провела анализ литературных источников с целью установления состава изучаемых лекарственных веществ, входящих в состав анальгина, парацетамола, аспирина, их классификации, химических, физических и фармацевтических свойств. Нами была подобрана методика, подходящая для установления качества выбранных лекарственных препаратов в аналитической лаборатории. Проведены исследования качества лекарственных препаратов по выбранной методике качественного анализа.

На основе проделанной работы было выяснено, что все лекарственные вещества соответствуют качеству ГОСТ.

Конечно, невозможно рассмотреть все многообразие лекарственных средств, их действие на организм, особенности применения и лекарственные формы этих препаратов, являющихся обычными химическими веществами. Более подробное знакомство с миром лекарств ждет тех, кто в дальнейшем будет заниматься фармакологией и медициной.

Также хочется добавить, что несмотря на бурное развитие фармакологической индустрии, учёным до сих пор не удалось создать ни одного лекарства без побочных эффектов. Об этом надо помнить каждому из нас: потому что, почувствовав недомогание, мы в первую очередь идём к врачу, потом – в аптеку, и начинается процесс лечения, который часто выражается в бессистемном приёме лекарств.

Поэтому в заключение хочется привести рекомендации по применению лекарственных препаратов:

    Лекарственные препараты необходимо правильно хранить, в специальном месте, подальше от источников света и тепла, согласно температурному режиму, который обязательно указывается производителем (в холодильнике или при комнатной температуре).

    Лекарственные препараты необходимо хранить в недоступных для детей местах.

    В аптечке не должно оставаться неизвестное лекарство. Каждая баночка, коробочка или пакетик должны быть подписаны.

    Нельзя использовать лекарства, если у них истек срок годности.

    Не принимайте препараты, назначенные другому человеку: хорошо переносимые одними, они могут вызвать лекарственную болезнь (аллергию) у других.

    Строго соблюдайте правила приема препарата: время приема (до или после еды), дозировки и интервал между приемами.

    Принимайте только те лекарства, которые вам прописал лечащий врач.

    Не спешите начинать с лекарств: иногда достаточно выспаться, отдохнуть, подышать свежим воздухом.

Соблюдая даже эти немногие и несложные рекомендации по применению лекарственных препаратов, Вы сможете сохранить главное – здоровье!

Библиографический список.

1) Аликберова Л.Ю.Занимательная химия: Книга для учащихся, учителей и родите-лей. –М.:АСТ-ПРЕСС, 2002.

2) Артеменко А.И. Применение органических соединений. – М.: Дрофа, 2005.

3) Машковский М.Д. Лекарственные средства. М.: Медицина, 2001.

4) Пичугина Г.В.Химия и повседневная жизнь человека. М.: Дрофа, 2004.

5) Справочник Видаль: Лекарственные препараты в России: Справочник.- М.: Астра-ФармСервис.- 2001.- 1536 с.

6) Тутельян В.А. Витамины: 99 вопросов и ответов.- М.- 2000.- 47 с.

7) Энциклопедия для детей, том 17. Химия. - М. Аванта+, 200.-640с.

8) Регистр лекарственных средств России "Энциклопедия лекарств".- 9-й вып.- ООО М; 2001.

9) Машковский М.Д. Лекарства ХХ века. М.: Новая волна, 1998, 320 с.;

10) Дайсон Г., Мей П. Химия синтетических лекарственных веществ. М.: Мир, 1964, 660 с.

11)Энциклопедия лекарств 9 выпуск 2002 года. Лекарственные средства М.Д. Машковский 14 издание.

12) http :// www . consultpharma . ru / index . php / ru / documents / proizvodstvo /710- gostr -52249-2009- part 1? showall =1

Одна из наиболее важных задач фармацевтической химии - это разработка и совершенствование методов оценки качества лекарственных средств.

Для установления чистоты лекарственных веществ используют различные физические, физико-химические, химические методы анализа или их сочетание.

ГФ предлагает следующие методы контроля качества ЛС.

Физические и физико-химические методы. К ним относятся: определение температур плавления и затвердевания, а также температурных пределов перегонки; определение плотности, показателей преломления (рефрактометрия), оптического вращения (поляриметрия); спектрофотометрия - ультрафиолетовая, инфракрасная; фотоколориметрия, эмиссионная и атомно-абсорбционная спектрометрия, флуориметрия, спектроскопия ядерного магнитного резонанса, масс-спектрометрия; хроматография - адсорбционная, распределительная, ионообменная, газовая, высокоэффективная жидкостная; электрофорез (фронтальный, зональный, капиллярный); электрометрические методы (потенциометрическое определение pH, потенциометрическое титрование, амперометрическое титрование, вольтамперометрия).

Кроме того, возможно применение методов, альтернативных фармакопейным, которые иногда имеют более совершенные аналитические характеристики (скорость, точность анализа, автоматизация). В некоторых случаях фармацевтическое предприятие приобретает прибор, в основе использования которого лежит метод, еще не включенный в Фармакопею (например, метод рама- новской спектроскопии - оптический дихроизм). Иногда целесообразно при определении подлинности или испытании на чистоту заменить хроматографическую методику на спектрофотометрическую. Фармакопейный метод определения примесей тяжелых металлов осаждением их в виде сульфидов или тио- ацетамидов обладает рядом недостатков. Для определения примесей тяжелых металлов многие производители внедряют такие физико-химические методы анализа, как атомно-абсорбционная спектрометрия и атомно-эмиссионная спектрометрия с индуктивно связанной плазмой.

Важной физической константой, характеризующей подлинность и степень чистоты ЛС, является температура плавления. Чистое вещество имеет четкую температуру плавления, которая изменяется в присутствии примесей. Для лекарственных веществ, содержащих некоторое количество допустимых примесей, ГФ регламентирует интервал температуры плавления в пределах 2 °С. Но в соответствии с законом Рауля (АТ = iK3C, где АТ - понижение температуры кристаллизации; К3 - криоскопическая постоянная; С - концентрация) при і = 1 (неэлектролит) значение А Г не может быть одинаковым для всех веществ. Это связано не только с содержанием примесей, но и с природой самого ЛВ, т. е. с величиной криоскопической постоянной К3, отражающей молярное понижение температуры плавления ЛВ. Таким образом, при одинаковом АТ = = 2 °С для камфоры (К3 = 40) и фенола (К3 = 7,3) массовые доли примесей не равны и составляют соответственно 0,76 и 2,5 %.

Для веществ, которые плавятся с разложением, обычно указывается температура, при которой вещество разлагается и происходит резкое изменение его вида.

В некоторых частных статьях ГФ X рекомендуется определять температуру затвердевания или температуру кипения (по ГФ XI - «температурные пределы перегонки») для ряда жидких ЛС. Температура кипения должна укладываться в интервал, приведенный в частной статье.

Более широкий интервал свидетельствует о присутствии примесей.

Во многих частных статьях ГФ X приведены допустимые значения плотности, реже вязкости, подтверждающие подлинность и доброкачественность ЛС.

Практически все частные статьи ГФ X нормируют такой показатель качества ЛС, как растворимость в различных растворителях. Присутствие примесей в ЛВ может повлиять на его растворимость, снижая или повышая ее в зависимости от природы примеси.

Критериями чистоты являются также цвет ЛВ и/или прозрачность жидких лекарственных форм.

Определенным критерием чистоты ЛС могут служить такие физические константы, как показатель преломления луча света в растворе испытуемого вещества (рефрактометрия) и удельное вращение, обусловленное способностью ряда веществ или их растворов вращать плоскость поляризации при прохождении через них плоскополяризованного света (поляриметрия). Методы определения этих констант относятся к оптическим методам анализа и применяются также для установления подлинности и количественного анализа ЛС и их лекарственных форм.

Важным критерием доброкачественности целого ряда ЛС является содержание в них воды. Изменение этого показателя (особенно при хранении) может изменить концентрацию действующего вещества, а, следовательно, и фармакологическую активность и сделать ЛС не пригодным к применению.

Химические методы. К ним относятся: качественные реакции на подлинность, растворимость, определение летучих веществ и воды, определение содержания азота в органических соединениях, титриметрические методы (кислотно-основное титрование, титрование в неводных растворителях, комплек- сонометрия), нитритометрия, кислотное число, число омыления, эфирное число, йодное число и др.

Биологические методы. Биологические методы контроля качества ЛС весьма разнообразны. Среди них испытания на токсичность, стерильность, микробиологическую чистоту.

Для проведения физико-химического анализа полупродуктов, субстанций лекарственных средств и готовых лекарственных форм при проверке их качества на соответствие требованиям ФС контрольно-аналитическая лаборатория должна быть оснащена следующим минимальным набором оборудования и приборов:

ИК-спектрофотометр (для определения подлинности);

спектрофотометр для спектрометрии в видимой и УФ-области (определение подлинности, количественное определение, однородность дозирования, растворимость);

оборудование для тонкослойной хроматографии (ТСХ) (определение подлинности, родственных примесей);

хроматограф для высокоэффективной жидкостной хроматографии (ВЭЖХ) (определение подлинности, количественное определение, определение родственных примесей, однородности дозирования, растворимости);

газожидкостной хроматограф (ГЖХ) (содержание примесей, определение однородности дозирования);

поляриметр (определение подлинности, количественное определение);

потенциометр (измерение pH, количественное определение);

атомно-абсорбционный спектрофотометр (элементный анализ тяжелых металлов и неметаллов);

титратор К. Фишера (определение содержания воды);

дериватограф (определение потери массы при высушивании).

1.6 Методы фармацевтического анализа и их классификация

Глава 2. Физические методы анализа

2.1 Проверка физических свойств или измерение физических констант лекарственных веществ

2.2 Установление рН среды

2.3 Определение прозрачности и мутности растворов

2.4 Оценка химических констант

Глава 3. Химические методы анализа

3.1 Особенности химических методов анализа

3.2 Гравиметрический (весовой) метод

3.3 Титриметрические (объемные) методы

3.4 Газометрический анализ

3.5 Количественный элементный анализ

Глава 4. Физико-химические методы анализа

4.1 Особенности физико-химических методов анализа

4.2 Оптические методы

4.3 Абсорбционные методы

4.4 Методы, основанные на испускании излучения

4.5 Методы, основанные на использовании магнитного поля

4.6 Электрохимические методы

4.7 Методы разделения

4.8 Термические методы анализа

Глава 5. Биологические методы анализа1

5.1 Биологический контроль качества лекарственных средств

5.2 Микробиологический контроль лекарственных средств

Список использованной литературы

Вступление

Фармацевтический анализ - это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.

Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.

К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.

Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.

Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.

Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).

Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.

Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.

Глава 1. Основные принципы фармацевтического анализа

1.1 Критерии фармацевтического анализа

На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).

Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.

Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.

При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.

При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.

Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ""предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10 -8 -10 -9 % анализируемого вещества, полярографические и флуориметрические 10 -6 -10 -9 %; чувствительность спектрофотометрических методов Ю -3 -10 -6 %, потенциометрических 10 -2 %.

Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.

Так, при вычислении результатов титриметрических определений наименее точная цифра - количество миллилитров титранта, израсходованного на титрование. В современных бюретках в зависимости от класса их точности максимальная ошибка отмеривания около ±0,02 мл. Ошибка от натекания тоже равна ±0,02 мл. Если при указанной общей ошибке отмеривания и натекания ±0,04 мл на титрование расходуется 20 мл титранта, то относительная ошибка составит 0,2%. При уменьшении навески и количества миллилитров титранта точность соответственно уменьшается. Таким образом, титриметрическое определение можно выполнять с относительной погрешностью ±(0,2-0,3)%.

Точность титриметрических определений можно повысить, если пользоваться микробюретками, применение которых значительно уменьшает ошибки от неточного отмеривания, натекания и влияния температуры. Погрешность допускается также при взятии навески.

Отвешивание навески при выполнении анализа лекарственного вещества осуществляют с точностью до ±0,2 мг. При взятии обычной для фармакопейного анализа навески 0,5 г препарата и точности взвешивания ±0,2 мг относительная ошибка будет равна 0,4%. При анализе лекарственных форм, выполнении экспресс-анализа такая точность при отвешивании не требуется, поэтому навеску берут с точностью ±(0,001-0,01) г, т.е. с предельной относительной ошибкой 0,1-1%. Это можно отнести и к точности отвешивания навески для колориметрического анализа, точность результатов которого ±5%.

1.2 Ошибки, возможные при проведении фармацевтического анализа

При выполнении количественного определения любым химическим или физико-химическим методом могут быть допущены три группы ошибок: грубые (промахи), систематические (определенные) и случайные (неопределенные).

Грубые ошибки являются результатом просчета наблюдателя при выполнении какой-либо из операций определения или неправильно выполненных расчетов. Результаты с грубыми ошибками отбрасываются как недоброкачественные.

Систематические ошибки отражают правильность результатов анализа. Они искажают результаты измерений обычно в одну сторону (положительную или отрицательную) на некоторое постоянное значение. Причиной систематических ошибок в анализе могут быть, например, гигроскопичность препарата при отвешивании его навески; несовершенство измерительных и физико-химических приборов; опытность аналитика и т.д. Систематические ошибки можно частично устранить внесением поправок, калибровкой прибора и т.д. Однако всегда необходимо добиваться того, чтобы систематическая ошибка была соизмерима с ошибкой прибора и не превышала случайной ошибки.

Случайные ошибки отражают воспроизводимость результатов анализа. Они вызываются неконтролируемыми переменными. Среднее арифметическое случайных ошибок стремится к нулю при постановке большого числа опытов в одних и тех же условиях. Поэтому для расчетов необходимо использовать не результаты единичных измерений, а среднее из нескольких параллельных определений.

Правильность результатов определений выражают абсолютной ошибкой и относительной ошибкой.

Абсолютная ошибка представляет собой разность между полученным результатом и истинным значением. Эта ошибка выражается в тех же единицах, что и определяемая величина (граммах, миллилитрах, процентах).

Относительная ошибка определения равна отношению абсолютной ошибки к истинному значению определяемой величины. Выражают относительную ошибку обычно в процентах (умножая полученную величину на 100). Относительные ошибки определений физико-химическими методами включают как точность выполнения подготовительных операций (взвешивание, отмеривание, растворение), так и точность выполнения измерений на приборе (инструментальная ошибка).

Значения относительных ошибок находятся в зависимости от того, каким методом выполняют анализ и что представляет собой анализируемый объект - индивидуальное вещество или многокомпонентную смесь. Индивидуальные вещества можно определять при анализе спек- трофотометрическим методом в УФ- и видимой областях с относительной погрешностью ±(2-3)%, ИК-спектрофотометрией ±(5-12)%, газо- жидкостцой хроматографией ±(3-3,5)%; полярографией ±(2-3)%; потенциометрией ±(0,3-1)%.

При анализе многокомпонентных смесей относительная погрешность определения этими методами возрастает примерно в два раза. Сочетание хроматографии с другими методами, в частности использование хроматооптических и хроматоэлектрохимических методов, позволяет выполнять анализ многокомпонентных смесей с относительной погрешностью ±(3-7)%.

Точность биологических методов намного ниже, чем химических и физико-химических. Относительная ошибка биологических определений достигает 20-30 и даже 50%. Для повышения точности в ГФ XI введен статистический анализ результатов биологических испытаний.

Относительная ошибка определения может быть уменьшена за счет увеличения числа параллельных измерений. Однако эти возможности имеют определенный предел. Уменьшать случайную ошибку измерений, увеличивая число опытов, целесообразно до тех пор, пока она станет меньше систематической. Обычно в фармацевтическом анализе выполняют 3-6 параллельных измерений. При статистической обработке результатов определений с целью получения достоверных результатов выполняют не менее семи параллельных измерений.

1.3 Общие принципы испытаний подлинности лекарственных веществ

Испытание на подлинность - это подтверждение идентичности анализируемого лекарственного вещества (лекарственной формы), осуществляемое на основе требований Фармакопеи или другой нормативно-технической документации (НТД). Испытания выполняют физическими, химическими и физико-химическими методами. Непременным условием объективного испытания подлинности лекарственного вещества является идентификация тех ионов и функциональных групп, входящих в структуру молекул, которые обусловливают фармакологическую активность. С помощью физических и химических констант (удельного вращения, рН среды, показателя преломления, УФ- и ИК-спектра) подтверждают и другие свойства молекул, оказывающие влияние на фармакологический эффект. Применяемые в фармацевтическом анализе химические реакции сопровождаются образованием окрашенных соединений, выделением газообразных или нерастворимых в воде соединений. Последние можно идентифицировать по температуре плавления.

1.4 Источники и причины недоброкачественности лекарственных веществ

Основные источники технологических и специфических примесей - аппаратура, исходное сырье, растворители и другие вещества, которые используют при получении лекарственных средств. Материал, из которого изготовлена аппаратура (металл, стекло), может служить источником примесей тяжелых металлов и мышьяка. При плохой очистке в препаратах могут содержаться примеси растворителей, волокна тканей или фильтровальной бумаги, песок, асбест и т.д., а также остатки кислот или щелочей.

На качество синтезируемых лекарственных веществ могут оказывать влияние различные факторы.

Технологические факторы - первая группа факторов, оказывающих влияние в процессе синтеза лекарственного вещества. Степень чистоты исходных веществ, температурный режим, давление, рН среды, растворители, применяемые в процессе синтеза и для очистки, режим и температура сушки, колеблющаяся даже в небольших пределах, - все эти факторы могут привести к появлению примесей, которые накапливаются от одной к другой стадии. При этом могут происходить образование продуктов побочных реакций или продуктов распада, процессы взаимодействия исходных и промежуточных продуктов синтеза с образованием таких веществ, от которых трудно затем отделить конечный продукт. В процессе синтеза возможно также образование различных таутомерных форм как в растворах, так и в кристаллическом состоянии. Так, например, многие органические соединения могут существовать в амидной, имидной и других таутомерных формах. Причем нередко в зависимости от условий получения, очистки и хранения лекарственное вещество может представлять собой смесь двух таутомеров или других изомеров, в том числе оптических, различающихся по фармакологической активности.

Вторая группа факторов - образование различных кристаллических модификаций, или полиморфизм. Около 65% лекарственных веществ, относящихся к числу барбитуратов, стероидов, антибиотиков, алкалоидов и др., образуют по 1-5 и более различных модификаций. Остальные дают при кристаллизации стабильные полиморфные и псевдополиморфные модификации. Они различаются не только по физико-химическим свойствам (температуре плавления, плотности, растворимости) и фармакологическому действию, но имеют различную величину свободной поверхностной энергии, а следовательно, неодинаковую устойчивость к действию кислорода воздуха, света, влаги. Это вызвано изменениями энергетических уровней молекул, что оказывает влияние на спектральные, термические свойства, растворимость и абсорбцию лекарственных веществ. Образование полиморфных модификаций зависит от условий кристаллизации, используемого при этом растворителя, температуры. Превращение одной полиморфной формы в другую происходит при хранении, сушке, измельчении.

В лекарственных веществах, получаемых из растительного и животного сырья, основными примесями являются сопутствующие природные соединения (алкалоиды, ферменты, белки, гормоны и др.). Многие из них очень сходны по химическому строению и физико-химическим свойствам с основным продуктом экстракции. Поэтому очистка его представляет большую сложность.

Большое влияние на загрязнение примесями одних лекарственных препаратов другими может оказать запыленность производственных помещений химико-фармацевтических предприятий. В рабочей зоне этих помещений при условии получения одного или нескольких препаратов (лекарственных форм) все они могут содержаться в виде аэрозолей в воздухе. При этом происходит так называемое "перекрестное загрязнение".

Всемирной организацией здравоохранения (ВОЗ) в 1976 г. были разработаны специальные правила организации производства и контроля качества лекарственных средств, которые предусматривают условия предотвращения "перекрестного загрязнения".

Важное значение для качества лекарств имеют не только технологический процесс, но и условия хранения. На доброкачественность препаратов оказывает влияние излишняя влажность, которая может привести к гидролизу. В результате гидролиза образуются основные соли, продукты омыления и другие вещества с иным характером фармакологического действия. При хранении препаратов-кристаллогидратов (натрия арсенат, меди сульфат и др.) необходимо, наоборот, соблюдать условия, исключающие потерю кристаллизационной воды.

При хранении и транспортировке препаратов необходимо учитывать воздействие света и кислорода воздуха. Под влиянием этих факторов может происходить разложение, например, таких веществ, как хлорная известь, серебра нитрат, иодиды, бромиды и т.д. Большое значение имеет качество тары, используемой для хранения лекарственных препаратов, а также материал, из которого она изготовлена. Последний тоже может быть источником примесей.

Таким образом, примеси, содержащиеся в лекарственных веществах, можно разделить на две группы: примеси технологические, т.е. внесенные исходным сырьем или образовавшиеся в процессе производства, и примеси, приобретенные в процессе хранения или транспортировки, под воздействием различных факторов (теплоты, света, кислорода воздуха и т.д.).

Содержание тех и других примесей должно строго контролироваться, чтобы исключить присутствие токсичных соединений или наличие индифферентных веществ в лекарственных средствах в таких количествах, которые мешают их использованию для конкретных целей. Иными словами, лекарственное вещество должно иметь достаточную степень чистоты, а следовательно, отвечать требованиям определенной спецификации.

Лекарственное вещество является чистым, если дальнейшая очистка не меняет его фармакологической активности, химической стабильности, физических свойств и биологической доступности.

В последние годы в связи с ухудшением экологической обстановки на наличие примесей тяжелых металлов испытывают и лекарственное растительное сырье. Важность проведения таких испытаний вызвана тем, что при проведении исследований 60 различных образцов растительного сырья установлено содержание в них 14 металлов, в том числе таких токсичных, как свинец, кадмий, никель, олово, сурьма и даже таллий. Их содержание в большинстве случаев значительно превышает установленные ПДК для овощей и фруктов.

Фармакопейный тест на определение примесей тяжелых металлов - один из широко применяемых во всех национальных фармакопеях мира, которые рекомендуют его для исследования не только индивидуальных лекарственных веществ, но и масел, экстрактов, ряда инъекционных лекарственных форм. По мнению Комитета экспертов ВОЗ, такие испытания следует проводить в отношении лекарственных средств, имеющих разовые дозы не менее 0,5 г.

1.5 Общие требования к испытаниям на чистоту

Оценка степени чистоты лекарственного препарата - один из важных этапов фармацевтического анализа. Все лекарственные препараты независимо от способа получения испытывают на чистоту. При этом устанавливают содержание примесей. Их

8-09-2015, 20:00


Другие новости


4.2 Оптические методы

К этой группе относятся методы, основанные на определении показателя преломления луча света в растворе испытуемого вещества (рефрактометрия), измерении интерференции света (интерферометрия), способности раствора вещества вращать плоскость поляризованного луча (поляриметрия).

Оптические методы находят все более широкое применение в практике внутриаптечного контроля ввиду экспрессности, минимального расхода анализируемых лекарств.

Рефрактометрия использована для испытания подлинности лекарственных веществ, представляющих собой жидкости (диэтиламид никотиновой кислоты, метилсалицилат, токоферола ацетат), а во внутриаптечном контроле -- для анализа лекарственных форм, в том числе двойных и тройных смесей. Применяют также объемно-рефрактометрический анализ и рефрактометрический анализ методом полной и неполной экстракции.

Разработаны различные варианты методик анализа интерферометрическим методом лекарственных препаратов, титрованных растворов, дистиллированной воды.

Поляриметрию применяют для испытания подлинности лекарственных веществ, в молекулах которых имеется асимметрический атом углерода. Среди них большинство препаратов из групп алкалоидов, гормонов, витаминов, антибиотиков, терпенов.

В аналитической химии и фармацевтическом анализе используются рентгенорефрактометрия порошков, спектрополяриметрический анализ, лазерная интерферометрия, дисперсия вращения и круговой дихроизм.

Помимо указанных оптических методов для идентификации индивидуальных лекарственных веществ в фармацевтическом и токсикологическом анализе не теряет своего значения химическая микроскопия. Перспективно применение электронной микроскопии, особенно в фитохимическом анализе. В отличие от оптической микроскопии объект подвергается воздействию пучка электронов высоких энергий. Изображение, образованное рассеянными электронами, наблюдают на флуоресцирующем экране.

Одним из перспективных экспрессных физических методов является рентгенографический анализ. Он позволяет идентифицировать лекарственные вещества в кристаллической форме и различать при этом их полиморфное состояние. Для анализа кристаллических лекарственных веществ могут быть также применены различные виды микроскопии и такие методы, как оже-спектрометрия, фотоакустическая спектроскопия, компьютерная томография, измерения радиоактивности и др.

Эффективным недеструктивным методом является отражательная инфракрасная спектроскопия, которая используется для определения примесей различных продуктов разложения и воды, а также в анализе многокомпонентных смесей.

4.3 Абсорбционные методы

Абсорбционные методы основаны на свойствах веществ поглощать свет в различных областях спектра.

Атомно-абсорбционная спектрофотометрия основана на использовании ультрафиолетового или видимого излучения резонансной частоты. Поглощение излучения вызывается переходом электронов с внешних орбиталей атомов на орбитали с более высокой энергией. Объектами, поглощающими излучение, являются газообразные атомы, а также некоторые органические вещества. Сущность определений методом атомно-абсорбционной спектрометрии состоит в том, что через пламя, в котором распыляется анализируемый раствор пробы, проходит резонансное излучение от лампы с полым катодом. Это излучение попадает на входную щель монохроматора, причем из спектра выделяется только резонансная линия испытуемого элемента. Фотоэлектрическим методом измеряют уменьшение интенсивности резонансной линии, происходящей вследствие поглощения ее атомами определяемого элемента. Расчет концентрации производят с помощью уравнения, отражающего ее зависимость от ослабления интенсивности излучения источника света, длины поглощающего слоя и коэффициента поглощения света в центре линии поглощения. Метод отличается высокой избирательностью и чувствительностью.

Поглощение резонансных линий измеряют на атомно-абсорбцион- ных спектрофотометрах типа "Спектр-1", "Сатурн" и др. Точность определений не превышает 4%, предел обнаружения достигает 0,001 мкг/мл. Это свидетельствует о высокой чувствительности метода. Он находит все более широкое применение для оценки чистоты лекарственных препаратов, в частности определения минимальных примесей тяжелых металлов. Перспективно использование атомно-абсорбционной спектрофотометрии для анализа поливитаминных препаратов, аминокислот, барбитуратов, некоторых антибиотиков, алкалоидов, галогенсодержащих лекарственных веществ, ртутьсодержащих соединений.

Возможно также применение в фармации рентгеновской абсорбционной спектроскопии, основанной на поглощении атомами рентгеновского излучения.

Ультрафиолетовая спектрофотометрия -- наиболее простой и широко применяемый в фармации абсорбционный метод анализа. Его используют на всех этапах фармацевтического анализа лекарственных препаратов (испытания подлинности, чистоты, количественное определение). Разработано большое число способов качественного и количественного анализа лекарственных форм методом ультрафиолетовой спектрофотометрии. Для идентификации могут быть использованы атласы спектров лекарственных веществ, систематизирующие сведения о характере спектральных кривых и значениях удельных показателей поглощения.

Известны различные варианты использования метода УФ-спектрофотометрии для идентификации. При испытаниях на подлинность идентифицируют лекарственные вещества по положению максимума светопоглощения. Чаще в фармакопейных статьях приведены положения максимума (или минимума) и соответствующие им значения оптических плотностей. Иногда используют метод, основанный на вычислении отношения оптических плотностей при двух длинах волн (они обычно соответствуют двум максимумам или максимуму и минимуму светопоглощения). Идентифицируют целый ряд лекарственных веществ также по удельному показателю поглощения раствора.

Весьма перспективно для идентификации лекарственных веществ использование таких оптических характеристик, как положение полосы поглощения в шкале длин волн, частота в максимуме поглощения, значение пиковой и интегральной интенсивности, полуширина и асимметрия полос, сила осциллятора. Эти параметры делают более надежной идентификацию веществ, чем установление длины волны максимума светопоглощения и удельного показателя поглощения. Эти константы, позволяющие охарактеризовать наличие связи между УФ-спектром и структурой молекулы, были установлены и использованы для оценки качества лекарственных веществ, содержащих гетероатом кислорода в молекуле (В.П.Буряк).

Объективный выбор оптимальных условий количественного спектрофотометрического анализа можно осуществить только предварительным исследованием констант ионизации, влияния природы растворителей, рН среды и других факторов на характер спектра поглощения.

В НТД приведены различные способы использования УФ-спектрофотометрии для количественного определения лекарственных веществ, являющихся витаминами (ретинола ацетат, рутин, цианокобаламин), стероидными гормонами (кортизона ацетат, преднизон, прегнин, тестостерона пропионат), антибиотиками (натриевые соли оксациллина и метициллина, феноксиметилпенциллин, левомицетина стеарат, гризеофульвин). В качестве растворителей для спектрофотометрических измерений обычно используют воду или этанол. Расчет концентрации проводят различными способами: по стандарту, удельному показателю поглощения или калибровочному графику.

Количественный спектрофотометрический анализ целесообразно комбинировать с установлением подлинности по УФ-спектру. В этом случае раствор, приготовленный из одной навески, можно использовать для обоих этих испытаний. Чаще всего при спектрофотометрических определениях применяют способ, основанный на сравнении оптических плотностей анализируемого и стандартного растворов. Определенных условий анализа требуют лекарственные вещества, способные образовывать кислотно-основные формы в зависимости от рН среды. В таких случаях необходимо предварительно подбирать условия, в которых вещество в растворе полностью будет находиться в одной из таких форм.

Для уменьшения относительной погрешности фотометрического анализа, в частности снижения систематической ошибки, весьма перспективно использование стандартных образцов лекарственных веществ. Учитывая сложность получения и высокую стоимость, они могут быть заменены эталонами, приготавливаемыми из доступных неорганических соединений (дихромата калия, хромата калия).

В ГФ XI расширена область применения УФ-спектрофотометрии. Метод рекомендован для анализа многокомпонентных систем, а также для анализа лекарственных веществ, которые сами не поглощают свет в ультрафиолетовой и видимой областях спектра, но могут быть превращены в поглощающие свет соединения с помощью различных химических реакций.

Дифференциальные методы позволяют расширить область применения фотометрии в фармацевтическом анализе. Они дают возможность повысить ее объективность и точность, а также анализировать высокие концентрации веществ. Кроме того, этими методами можно анализировать многокомпонентные смеси без предварительного разделения.

Метод дифференциальной спектрофотометрии и фотоколориметрии включен в ГФ XI, вып. 1 (с. 40). Сущность его заключается в измерении светопоглощения анализируемого раствора относительно раствора сравнения, содержащего определенное количество испытуемого вещества. Это приводит к изменению рабочей области шкалы прибора и снижению относительной погрешности анализа до 0,5--1%, т.е. такой же, как и у титриметрических методов. Хорошие результаты были получены при использовании вместо растворов сравнения нейтральных светофильтров с известной оптической плотностью; входящих в комплект спектрофотометров и фотоколориметров (В.Г.Беликов).

Дифференциальный метод нашел применение не только в спектрофотометрии и фотоколориметрии, но и в фототурбидиметрии, фотонефелометрии, интерферометрии. Дифференциальные методы могут быть распространены и на другие физико-химические методы. Большие перспективы для анализа лекарств имеют и методы химического дифференциального анализа, основанные на использовании таких химических воздействий на состояние лекарственного вещества в растворе, как изменение рН среды, смена растворителя, изменение температуры, влияние электрических, магнитных, ультразвуковых полей и др.

Широкие возможности открывает в количественном спектрофотометрическом анализе один из вариантов дифференциальной спектрофотометрии -- ?Е-метод. Он основан на превращении анализируемого вещества в таутомерную (или иную) форму, отличающуюся по характеру светопоглощения.

Новые возможности в области идентификации и количественного определения органических веществ открывает использование производной УФ-спектрофотометрии. Метод основан на выделении индивидуальных полос из УФ-спектров, представляющих собой сумму налагающихся полос поглощения или полос, не имеющих четко выраженного максимума поглощения.

Производная спектрофотометрия дает возможность идентификации сходных по химической структуре лекарственных веществ или их смесей. Для повышения избирательности качественного спектрофотометрического анализа применяют способ построения вторых производных УФ-спектров. Вторую производную можно рассчитать способом численного дифференцирования.

Разработан унифицированный метод получения производных от спектров поглощения, который учитывает особенности характера спектра. Показано, что вторая производная имеет разрешающую способность примерно в 1,3 раза больше по сравнению с непосредственной спектрофотометрией. Это позволило использовать данный метод для идентификации кофеина, теобромина, теофиллина, папаверина гидрохлорида и дибазола в лекарственных формах. Вторая и четвертая производные в количественном анализе более эффективны по сравнению с титриметрическими методами. Продолжительность определения сокращается в 3-4 раза. Определение указанных препаратов в смесях оказалось возможным вне зависимости от характера поглощения сопутствующих веществ или при существенном уменьшении влияния их светопоглощения. Это позволяет исключить трудоемкие операции по разделению смесей.

Использование в спектрофотометрическом анализе комбинированного полинома позволило исключить влияние нелинейного фона и разработать методики количественного определения ряда препаратов в лекарственных формах, не требующие сложных расчетов результатов анализа. Комбинированный полином успешно применен при изучении процессов, происходящих при хранении лекарственных веществ и в химико-токсикологических исследованиях, так как позволяет уменьшить влияние светопоглощающих примесей (Е.Н.Вергейчик).

Спектроскопия комбинационного рассеяния (СКР) отличается от других спектроскопических методов по чувствительности, большому выбору растворителей и интервалов температур. Наличие отечественного КР-спектрометра марки ДСФ-24 позволяет применять этот метод не только для установления химической структуры, но и в фармацевтическом анализе.

Не получил еще должного развития в практике фармацевтического анализа метод спектрофотометрического титрования. Этот метод дает возможность выполнения безындикаторного титрования многокомпонентных смесей с близкими значениями рК на основе последовательного изменения оптической плотности в процессе титрования в зависимости от объема добавляемого титранта.

Фотоколориметрический метод широко применяется в фармацевтическом анализе. Количественное определение этим методом в отличие от УФ-спбктрофотометрии осуществляют в видимой области спектра. Определяемое вещество с помощью какого-либо реагента переводят в окрашенное соединение, а затем измеряют интенсивность окраски раствора на фотоколориметре. Точность определений зависит от выбора оптимальных условий протекания химической реакции.

Очень широко в фотометрическом анализе используются методики анализа препаратов, производных первичных ароматических аминов, основанные на использовании реакций диазотирования и азосочетания. В качестве азосоставляющего широко применяют N -(1-нафтил)-этилендиамин. Реакция образования азокрасителей лежит в основе фотометрического определения многих препаратов, производных фенолов.

Фотоколориметрический метод включен в НТД для количественного определения ряда нитропроизводных (нитроглицерин, фурадонин, фуразолидон), а также препаратов витаминов (рибофлавин,фолиевая кислота) и сердечных гликозидов (целанид). Разработаны многочисленные методики фотоколориметрического определения препаратов в лекарственных формах. Известны различные модификации фотоколориметрии и способы расчета концентрации в фотоколориметрическом анализе.

Перспективными для применения в качестве цветореагентов в фотометрическом анализе оказались такие поликарбонильные соединения, как биндон (ангидро-бис-индандион-1,3), аллоксан (тетраоксогекса-гидропиримидин), натриевая соль 2-карбэтоксииндандиона-1,3 и некоторые ее производные. Установлены оптимальные условия и разработаны унифицированные способы идентификации и спектрофотометрического определения в видимой области лекарственных веществ, содержащих первичную ароматическую или алифатическую аминогруппу, остаток сульфонил мочевины или являющимися азотсодержащими органическими основаниями и их солями (В.В.Петренко).

Широко используют в фотоколориметрии реакции окрашивания, основанные на образовании полиметиновых красителей, которые получаются при разрыве пиридинового или фуранового циклов либо при некоторых реакциях конденсации с первичными ароматическими аминами (А.С.Бейсенбеков).

Для идентификации и спектрофотометрического определения в видимой области спектра лекарственных веществ, производных ароматических аминов, тиолов, тиоамидов и других меркаптосоединений использованы в качестве цветореагентов N -хлор-, N -бензолсульфонил- и N -бензолсульфонил-2-хлор-1,4-бензохинонимина.

Один из вариантов унификации способов фотометрического анализа основан на косвенном определении по остатку нитрита натрия, вводимого в реакционную смесь в виде стандартного раствора, взятого в избытке. Избыток нитрита определяют затем фотометрически реакцией диазотирования с помощью этакридина лактата. Такой прием применен для косвенного фотометрического определения азотсодержащих лекарственных веществ по нитрит-иону, образующемуся в результате их превращений (гидролиза, термического разложения). Унифицированная методика позволяет осуществлять контроль качества более 30 таких лекарственных веществ в многочисленных лекарственных формах (П.Н.Ивахненко).

Фототурбидиметрия и фотонефелометрия - это методы, имеющие большие возможности, но пока ограниченно применяющиеся в фармацевтическом анализе. Основаны на измерении света, поглощенного (турбидиметрия) или рассеянного (нефелометрия) взвешенными частицами анализируемого вещества. С каждым годом методы совершенствуются. Рекомендуют, например, хронофототурбидиметрию в анализе лекарственных веществ. Сущность метода заключается в установлении изменений светопогашений во времени. Описано также применение термонефелометрии, основанной на установлении зависимости концентрации вещества от температуры, при которой наступает помутнение раствора препарата.

Систематические исследования в области фототурбидиметрии, хронофототурбидиметрии и фототурбидиметрического титрования показали возможность применения фосфорно-вольфрамовой кислоты для количественного определения азотсодержащих лекарственных веществ. В фототурбидиметрическом анализе использован как непосредственный, так и дифференциальный метод, а также автоматическое фототурбидиметрическое титрование и хронофототурбидиметрическое определение двухкомпонентных лекарственных форм (А.И.Сичко).

Инфракрасная (ИК) спектроскопия характеризуется широкой информативностью, что создает возможность объективной оценки подлинности и количественного определения лекарственных веществ. ИК-спектр однозначно характеризует всю структуру молекулы. Различия в химическом строении меняют характер ИК-спектра. Важные преимущества ИК-спектрофотометрии -- специфичность, быстрота выполнения анализа, высокая чувствительность, объективность получаемых результатов, возможность анализа вещества в кристаллическом состоянии.

ИК-спектры измеряют, используя обычно взвеси лекарственных веществ в вазелиновом масле, собственное поглощение которого не мешает идентификации анализируемого соединения. Для установления подлинности используют, как правило, расположенную в интервале частот от 650 до 1800 см -1 так называемую область "отпечатков пальцев" (650--1500 см -1), а также валентные колебания химических связей

С=0, С=С, С=N

В ГФ XI рекомендованы два способа установления подлинности лекарственных веществ но ИК-спектрам. Один из них основан на сравнении ИК-спектров испытуемого вещества и его стандартного образца. Спектры должны быть сняты в идентичных условиях, т.е. образцы должны быть в одинаковом агрегатном состоянии, в одной и той же концентрации, единой должна быть скорость регистрации и т.д. Второй способ заключается в сравнении ИК-спектра испытуемого вещества с его стандартным спектром. В этом случае необходимо строго соблюдать условия, предусмотренные для снятия стандартного спектра, приведенные в соответствующей НТД (ГФ, ВФС, ФС). Полное совпадение полос поглощения свидетельствует об идентичности веществ. Однако полиморфные модификации могут давать различные ИК-спектры. В таком случае для подтверждения идентичности необходимо перекристаллизовать испытуемые вещества из одного и того же растворителя и вновь снять спектры.

Подтверждением подлинности лекарственного вещества может служить также интенсивность поглощения. Для этой цели используют такие константы как показатель поглощения или величина интегральной интенсивности поглощения, равная площади, которую огибает кривая на спектре поглощения.

Установлена возможность использования ИК-спектроскопии для идентификации большой группы лекарственных веществ, содержащих в молекуле карбонильные группы. Подлинность устанавливают по характеристическим полосам поглощения в следующих областях: 1720-1760, 1424-1418, 950-в00 см -1 для карбоновых кислот; 1596-1582, 1430-1400, 1630-1612, 1528-1518 см -1 для аминокислот; 1690--1670, 1615--1580 см -1 для амидов; 1770--1670 см -1 для производных барбитуровой кислоты; 1384--1370, 1742--1740, 1050 см -1 для терпеноидов; 1680--1540, 1380--1278 см -1 для антибиотиков тетрациклинового ряда; 3580-3100, 3050-2870, 1742-1630, 903-390 см -1 для стероидов (А.Ф.Мынка).

Метод ИК-спектроскопии включен в фармакопеи многих зарубежных стран и в МФ III, где использован для идентификации более 40 лекарственных веществ. Методом ИК-спектрофотометрии можно проводить не только количественную оценку лекарственных веществ, но и исследование таких химических превращений, как диссоциация, сольволиз, метаболизм, полиморфизм и т.д.

4.4 Методы, основанные на испускании излучения

К этой группе методов относят фотометрию пламени, флуоресцентные и радиохимические методы.

В ГФ XI включена эмиссионная и пламенная спектрометрия для целей качественного и количественного определения химических элементов и их примесей в лекарственных веществах. Измерение интенсивности излучения спектральных линий испытуемых элементов выполняют на отечественных пламенных фотометрах ПФЛ-1, ПФМ, ПАЖ-1. Регистрирующими системами служат фотоэлементы, связанные с цифровыми и печатающими устройствами. Точность определений методами эмиссионной, как и атомно-абсорбционной, пламенной спектрометрии находится в пределах 1--4%, предел обнаружения может достигать 0,001 мкг/мл.

Количественное определение элементов методом эмиссионной пламенной спектрометрии (пламенной фотометрии) основано на установлении зависимости между интенсивностью спектральной линии и концентрацией элемента в растворе. Сущность выполнения испытания состоит в распылении анализируемого раствора до состояния аэрозоля в пламени горелки. Под воздействием температуры пламени происходят испарение растворителя и твердых частиц из капель аэрозоля, диссоциация молекул, возбуждение атомов и возникновение их характеристического излучения. С помощью светофильтра или монохроматора излучение анализируемого элемента отделяется от других и, попадая на фотоэлемент, вызывает фототок, который измеряется с помощью гальванометра или потенциометра.

Пламенная фотометрия использована для количественного анализа натрий-, калий- и кальций-содержащих препаратов в лекарственных формах. На основе исследования влияния на эмиссию определяемых катионов, органических анионов, вспомогательных и сопутствующих компонентов были разработаны методики количественного определения натрия гидрокарбоната, натрия салицилата, ПАСК-натрия, билигноста, гексенала, натрия нуклеината, кальция хлорида и глюконата, бепаска и др. Предложены методики одновременного определения двух солей с разными катионами в лекарственных формах, например калия иодида -- натрия гидрокарбоната, кальция хлорида -- калия бромида, калия иодида -- натрия салицилата и др.

Люминесцентные методы основаны на измерении вторичного излучения, возникающего в результате воздействия света на анализируемое вещество. К их числу относят флуоресцентные методы, хемилюминесценцию, рентгенофлуоресценцию и др.

Флуоресцентные методы основаны на способности веществ флуоресцировать в УФ-свете. Эта способность обусловлена структурой либо самих органических соединений, либо продуктов их диссоциации, сольволиза и других превращений, вызванных воздействием различных реактивов.

Флуоресцирующими свойствами обладают обычно органические соединения с симметричной структурой молекул, в которых имеются сопряженные связи, нитро-, нитрозо-, азо-, амидо-, карбоксильная или карбонильная группы. Интенсивность флуоресценции зависит от химической структуры и концентрации вещества, а также других факторов.

Флуориметрия может быть использована как для качественного, так и для количественного анализа. Количественный анализ выполняют на спектрофлуориметрах. Принцип их работы состоит в том, что свет от ртутно-кварцевой лампы через первичный светофильтр и конденсор падает на кювету с раствором испытуемого вещества. Расчет концентрации проводят по шкале стандартных образцов флуоресцирующего вещества известной концентрации.

Разработаны унифицированные методики количественного спект- рофлуориметрического определения производных п-аминобензолсульфамида (стрептоцид, сульфацил-натрий, сульгин, уросульфан и др.) и п-аминобензойной кислоты (анестезин, новокаин, новокаинамид). Водно-щелочные растворы сульфаниламидов имеют наибольшую флуоресценцию при рН б--8 и 10--12. Кроме того, сульфаниламиды, содержащие в молекуле незамещенную первичную ароматическую аминогруппу, после нагревания с о-фталевым альдегидом в присутствии серной кислоты приобретают интенсивную флуоресценцию в области 320--540 нм. В той же области флуоресцируют производные барбитуровой кислоты (барбитал, барбитал-натрий, фенобарбитал, этаминал-натрий) в щелочной среде (рН 12--13) с максимумом флуоресценции при 400 нм. Предложены высокочувствительные и специфичные методики спектрофлуориметрического определения антибиотиков: тетрациклина, окситетрациклина гидрохлорида, стрептомицина сульфата, пассомицина, флоримицина сульфата, гризеофульвина и сердечного гликозида целанида (Ф.В.Бабилев). Проведены исследования спектров флуоресценции ряда лекарственных средств, содержащих природные соединения: производные кумарина, антрахинона, флавоноидов (В.П.Георгиевский).

Выявлены комплексообразующие группировки у 120 лекарственных веществ, производных оксибензойной, оксинафтойной, антраниловой кислот, 8-оксихинолина, оксипиридина, 3- и 5-оксифлавона, птеридина и др. Указанные группировки способны образовывать флуоресцирующие комплексы с катионами магния, алюминия, бора, цинка, скандия при возбуждении флуоресценции от 330 нм и выше и ее излучении при длинах волн, превышающих 400 нм. Проведенные исследования позволили разработать методики флуориметрирования 85 лекарственных средств (А.А.Хабаров).

Наряду с производной спектрофотометрией в фармацевтическом анализе обоснована возможность применения производной спектрофлуориметрии. Спектры снимают на флуоресцентном спектрофотометре МПФ-4 с термостатирующей ячейкой, а производные находят аналогичным дифференцированием с помощью компьютера. Метод использован для разработки простых, точных и высокочувствительных методик количественного определения гидрохлоридов пиридоксина и эфедрина в лекарственных формах в присутствии продуктов разложения.

Перспективность использования рентгеновской флуоресценции для определения малых количеств примесей в лекарственных препаратах обусловливается высокой чувствительностью и возможностью выполнения анализа без предварительного разрушения вещества. Метод рентгенофлуоресцентной спектрометрии оказался перспективным для количественного анализа веществ, имеющих в молекуле такие гетероатомы, как железо, кобальт, бром, серебро и др. Принцип метода заключается в сравнении вторичного рентгеновского излучения элемента в анализируемом и стандартном образце. Рентгенофлуоресцентная спектрометрия относится к числу методов, не требующих предварительных деструктивных изменений. Выполняют анализ на отечественном спектрометре РС-5700. Продолжительность анализа 15 мин.

Хемилюминесценция -- метод, заключающийся в использовании энергии, возникающей в процессе химических реакций.

Эта энергия служит источником возбуждения. Ее излучают при окислении некоторые барбитураты (особенно фенобарбитал), гидразиды ароматических кислот и другие соединения. Это создает большие возможности использования метода для определения очень малых концентраций веществ в биологическом материале.

Радиохимические методы находят все более широкоеприменение в фармацевтическоманализе. Радиометрический анализ, основанный на измерении?- или?-излучения с помощью спектрометров, использован (наряду с другими параметрами для оценки качества фармакопейных радиоактивных препаратов. Широко применяют в различных областях техники и особенно в аналитической химии высокочувствительные методы анализа с применением радиоактивных изотопов (меченых атомов). Для обнаружения следов примесей в веществах используют активационный анализ; для определения в смесях близких по свойствам трудноразделяемых компонентов -- метод изотопного разбавления. Применяют также радиометрическое титрование и радиоактивные индикаторы. Оригинальным вариантом сочетания радиоизотопного и хроматографического методов является изучение диффузионно-осадочных хроматограмм в тонком слое желатинового геля с помощью радиоактивных индикаторов.

4.5 Методы, основанные на использовании магнитного поля

Методы ЯМР-, ПМР-спектроскопии, а также масс-спектрометрии отличаются высокой специфичностью, чувствительностью и используются для анализа многокомпонентных смесей, в том числе лекарственных форм без предварительного их разделения.

Метод спектроскопии ЯМР используют для испытания подлинности лекарственных веществ, которая может быть подтверждена либо по полному набору спектральных параметров, характеризующих структуру данного соединения, либо по наиболее характерным сигналам спектра. Подлинность можно также установить с помощью стандартного образца, добавляя определенное его количество к анализируемому раствору. Полное совпадение спектров анализируемого вещества и его смеси со стандартным образцом указывает на их идентичность.

Регистрацию ЯМР-спектров выполняют на спектрометрах с рабочими частотами 60 мГц и более, используя такие основные характеристики спектров, как химический сдвиг, мультиплетность сигнала резонанса, константу спин-спинового взаимодействия, площадь сигнала резонанса. Наиболее обширную информацию о молекулярной структуре анализируемого вещества дают спектры ЯМР 13 С и 1 Н.

Надежная идентификация препаратов гестагенных и эстрогенных гормонов, а также их синтетических аналогов: прогестерона, прегнина, этинилэстрадиола, метилэстрадиола, эстрадиола дипропионата и др. -- может быть осуществлена методом спектроскопии ЯМР 1 Н в деитерированном хлороформе на спектрометре УН-90 с рабочей частотой 90 мГц (внутренний стандарт -- тетраметилсилан).

Систематические исследования позволили установить возможность применения спектроскопии ЯМР 13 С для идентификации лекарственных веществ 10-ацилпроизводных фенотиазина (хлорацизина, фторацизина, этмозина, этацизина), 1,4-бензодиазепина (хлор-, бром- и нитропроизводные) и др. Методом спектроскопии ЯМР 1 Н и 13 С осуществлены идентификация, количественная оценка основных компонентов и примесей в препаратах и стандартных образцах природных и полусинтетических антибиотиков аминогликозидов, пенициллинов, цефалоспоринов, макролидов и др. Указанный метод использован для идентификации в унифицированных условиях ряда витаминов: липоевой и аскорбиновой кислот, липамида, холина и метилметионинсульфония хлоридов, ретинола пальмитата, кальция пантотената, эргокальциферола. Метод спектроскопии ЯМР 1 Н позволил осуществлять надежную идентификацию таких сложных по химической структуре природных соединений, как сердечные гликозиды (дигоксин, дигитоксин, целанид, дезланозид, нериолин, цимарин и др.). Для ускорения обработки спектральной информации использована ЭВМ. Ряд методик идентификации включен в ФС и ВФС (В.С.Карташов).

Количественное определение лекарственного вещества может быть также выполнено с использованием спектров ЯМР. Относительная погрешность количественных определений методом ЯМР зависит от точности измерений площадей резонансных сигналов и составляет ±2--5%. При определении относительного содержания вещества или его примеси измеряют площади сигналов резонанса испытуемого вещества и стандартного образца. Затем вычисляют количество испытуемого вещества. Для определения абсолютного содержания лекарственного вещества или примеси анализируемые образцы готовят количественно и добавляют к навеске точно отвешенную массу внутреннего стандарта. После этого выполняют регистрацию спектра, измеряют площади сигналов анализируемого вещества (примеси) и внутреннего стандарта, затем вычисляют абсолютное содержание.

Развитие импульсной техники Фурье-спектроскопии, применение ЭВМ позволили резко повысить чувствительность метода ЯМР 13 С и распространить его на количественный анализ многокомпонентных смесей биоорганических соединений, в том числе лекарственных веществ без их предварительного разделения.

Спектроскопические параметры ПМР-спектров дают целый комплекс разнообразной и весьма селективной информации, который может быть использован в фармацевтическом анализе. Следует строго соблюдать условия регистрации спектров, так как на значения химических сдвигов и другие параметры оказывают влияние тип растворителя, температура, рН раствора, концентрация вещества.

Если полная интерпретация ПМР-спектров затруднена, то выделяют только характерные сигналы, по которым идентифицируют испытуемое вещество. ПМР-спектроскопия применена для испытания подлинности многих лекарственных веществ, в том числе барбитуратов, гормональных средств, антибиотиков и др.

Поскольку метод дает информацию о наличии или отсутствии примесей к основному веществу, важное практическое значение имеет ПМР-спектроскопия для испытания лекарственных веществ на чистоту. Различия в значениях величин тех или иных констант позволяют сделать заключение о присутствии примесей продуктов разложения лекарственного вещества. Чувствительность метода к примесям колеблется в широких пределах и зависит от спектра основного вещества, наличия в молекулах тех или иных групп, содержащих протоны, растворимости в соответствующих растворителях. Минимальное содержание примеси, которое можно установить, составляет обычно 1--2%. Особенно ценной является возможность обнаружения примесей изомеров, присутствие которых невозможно подтвердить другими методами. Так, например, обнаружена примесь кислоты салициловой в кислоте ацетилсалициловой, морфина в кодеине и т.д.

Количественный анализ на основе использования ПМР-спектроскопии имеет преимущества перед другими методами, заключающиеся в том, что при анализе многокомпонентных смесей нет необходимости выделять индивидуальные компоненты для калибровки прибора. Поэтому метод широко применим для количественного анализа как индивидуальных лекарственных веществ, так и растворов, таблеток, капсул, суспензий и других лекарственных форм, содержащих один или несколько ингредиентов. Стандартное отклонение не превышает ±2,76%. Описаны способы анализа таблеток фуросемида, мепробамата, хинидина, преднизолона и др.

Расширяется диапазон применения масс-спектрометрии в анализе лекарственных веществ для идентификации и количественного анализа. Метод основан на ионизации молекул органических соединений. Он отличается большой информативностью и исключительно высокой чувствительностью. Масс-спектрометрию применяют для определения антибиотиков, витаминов, пуриновых оснований, стероидов, аминокислот и других лекарственных веществ, а также продуктов их метаболизма.

Использование лазеров в аналитических приборах значительно расширяет практическое применение УФ- и ИК-спектрофотометрии, а также флуоресцентной и масс-спектроскопии, спектроскопии комбинационного рассеяния, нефелометрии и других методов. Лазерные источники возбуждения позволяют повысить чувствительность многих методов анализа, сократить продолжительность их выполнения. Лазеры используют в дистанционном анализе в качестве детекторов в хроматографии, в биоаналитической химии и т.д.

4.6 Электрохимические методы

Эта группа методов качественного и количественного анализа основана на электрохимических явлениях, происходящих в исследуемой среде и связанных с изменениями химической структуры, физических свойств или концентрации веществ.

Потенциометрия -- метод, основанный на измерении равновесных потенциалов, возникающих на границе между испытуемым раствором и погруженным в него электродом. В ГФ XI включен метод потенциометрического титрования, заключающийся в установлении эквивалентного объема титранта путем измерения ЭДС индикаторного электрода и электрода сравнения, погруженных в анализируемый раствор. Метод прямой потенциометрии используется для определения рН (рН-метрия) и установления концентрации отдельных ионов. Потенциометрическое титрование отличается от индикаторного возможностью анализировать сильно окрашенные, коллоидные и мутные растворы, а также растворы, содержащие окислителй. Кроме того, можно последовательно оттитровать в смеси несколько компонентов в водных и неводных средах. Потенциометрический метод используют для титрования на основе реакций нейтрализации, осаждения, комплексообразования, окисления -- восстановления. Электродом сравнения во всех указанных методах служит каломельный, хлорсеребряный или стеклянный (последний не используют при анализе методом нейтрализации). Индикаторным при кислотно-основном титровании является стеклянный электрод, при комплексонометрическом -- ртутный или ион-селективный, в методе осаждения -- серебряный, в окислительно-восстановительном -- платиновый.

Измерение ЭДС, возникающей при титровании за счет разности потенциалов между индикаторным электродом и электродом сравнения, производят с помощью высокоомных рН-метров. Титрант прибавляют из бюретки равными объемами, постоянно перемешивая титруемую жидкость. Вблизи точки эквивалентности титрант прибавляют по 0,1--0,05 мл. Значение ЭДС в этой точке изменяется наиболее сильно, так как абсолютная величина отношения изменения ЭДС к приращению объема прибавляемого титранта будет при этом максимальной. Результаты титрования представляют либо графически, устанавливая точку эквивалентности на кривой титрования, либо расчетным методом. Затем вычисляют эквивалентный объем титранта по формулам (см. ГФ XI, вып. 1, с. 121).

Амперометрическое титрование с двумя индикаторными электродами, или титрование "до полного прекращения тока", основано на использовании пары идентичных инертных электродов (платина, золото), которые находятся под небольшим напряжением. Метод наиболее часто используют для нитрито- и иодометрического титрования. Точку эквивалентности находят по резкому увеличению силы тока, проходящего через ячейку (в течение 30 с) после добавления последней порции реагента. Эту точку можно установить графическим методом по зависимости силы тока от объема добавленного реагента, так же как при потенциометрическом титровании (ГФ XI, вып. 1, с. 123). Разработаны также способы биамперометрического титрования лекарственных веществ при использовании методов нитритометрии, осаждения и окисления -- восстановления.

Особенно перспективна ионометрия, использующая зависимость между ЭДС гальванической сети с ионоселективным электродом и концентрацией анализируемого иона в электродной ячейке цепи. Определения неорганических и органических (азотсодержащих) лекарственных веществ с помощью ионоселективных электродов отличаются от других методов высокой, чувствительностью, экспрессностью, хорошей воспроизводимостью результатов, несложным оборудованием, доступными реагентами, пригодностью для автоматизированного контроля и исследования механизма действия лекарств. В качестве примера можно привести способы ионометрического определения калия, натрия, галогенидов и кальцийсодержащих лекарственных веществ в таблетках и в солевых кровезамещающих жидкостях. С помощью отечественных рН-метров (рН-121, рН-673), ионометра И-115 и калий селективных электродов определяют калиевые соли различных кислот (оротовой, аспарагиновой и др.).

Полярография -- метод анализа, основанный на измерении силы тока, возникающего на микроэлектроде при электровосстановлении или электроокислении анализируемого вещества в растворе. Электролиз проводят в полярографической ячейке, которая состоит из электролизера (сосуда) и двух электродов. Один из них -- ртутный капающий микроэлектрод, а другой -- макроэлектрод, которым служит либо слой ртути на электролизере, либо внешний насыщенный каломельный электрод. Полярографический анализ может быть выполнен в водной среде, в смешанных растворителях (вода -- этанол, вода -- ацетон), в неводных средах (этаноле, ацетоне, диметилформамиде и др.). При идентичных условиях измерений для идентификации вещества используют потенциал полуволны. Количественное определение основано на измерении предельного диффузного тока испытуемого лекарственного вещества (высота волны). Для определения содержания используют метод калибровочных кривых, метод стандартных растворов и метод добавок (ГФ XI, вып. 1, с. 154). Полярографию широко используют в анализе неорганических веществ, а также алкалоидов, витаминов, гормонов, антибиотиков, сердечных гликозидов. Весьма перспективны вследствие высокой чувствительности современные методы: дифференциальная пульс-полярография, осциллографическая полярография и др.

Далеко не исчерпаны возможности электрохимических методов в фармацевтическом анализе. Разрабатываются новые варианты потенциометрии: инверсионная бестоковая хронопотенциометрия, прямая потенциометрия с помощью газового аммоний-селективного электрода и др. Расширяются исследования в области применения в фармацевтическом анализе таких методов, как кондуктометрия, основанная на исследовании электрической проводимости растворов анализируемых веществ; кулонометрия, заключающаяся в измерении количества электричества, затраченного на электрохимическое восстановление или окисление определяемых ионов.

Кулонометрия имеет ряд преимуществ перед другими физико-химическими и химическими методами. Поскольку этот метод основан на измерении количества электричества, он дает возможность непосредственно определять массу вещества, а не какое-либо свойство, пропорциональное концентрации. Вот почему кулонометрия исключает необходимость использования не только стандартных, но и титрованных растворов. Что касается кулонометрического титрования, то оно расширяет область титриметрии за счет применения различных неустойчивых электрогенерированных титрантов. Одна и та же электрохимическая ячейка может быть использована для проведения титрования с использованием различных типов химических реакций. Так, методом нейтрализации можно опредачить кислоты и основания даже в миллимолярных растворах с погрешностью не более 0,5%.

Кулонометрический метод применяют при определении малых количеств анаболических стероидов, местно-анестезирующих и других лекарственных веществ. Определению не мешают наполнители таблеток. Методики отличаются простотой, экспрессностью, быстротой и чувствительностью.

Метод диэлектрических измерений в диапазоне электромагнитных волн широко применяют для экспресс-анализа в химической технологии, пищевой промышленности и других областях. Одним из перспективных направлений является диэлькометрический контроль ферментных и других биопрепаратов. Он позволяет осуществить быструю, точную, безреагентную оценку таких параметров, как влажность, степень гомогенности и чистоты препарата. Диэлькометрический контроль является многопараметровым, испытуемые растворы могут быть непрозрачными, а измерения можно выполнять бесконтактным способом с записью результатов на ЭВМ.

4.7 Методы разделения

Из физико-химических методов разделения в фармацевтическом анализе в основном используют хроматографию, электрофорез и экстракцию.

Хроматографические методы разделения веществ основаны на их распределении между двумя фазами: подвижной и неподвижной. Подвижной фазой может быть жидкость или газ, неподвижной -- твердое вещество или жидкость, адсорбированная на твердом носителе. Относительная скорость перемещения частиц вдоль пути разделения зависит от взаимодействия их с неподвижной фазой. Это приводит к тому, что каждое из веществ проходит определенную длину пути на носителе. Отношение скорости перемещения вещества к скорости перемещения растворителя обозначают Эта величина является константой вещества для данных условий разделения и используется для идентификации.

Хроматография дает возможность наиболее эффективно осуществлять избирательное распределение компонентов анализируемого образца. Это имеет существенное значение для фармацевтического анализа, объектами исследования в котором обычно являются смеси нескольких веществ.

По механизму процесса разделения хроматографические методы классифицируют на ионообменную, адсорбционную, осадочную, распределительную, окислительно-восстановительную хроматографию. По форме проведения процесса можно выделить колоночную, капиллярную и плоскостную хроматографию. Последняя может быть выполнена на бумаге и в тонком (закрепленном или незакрепленном) слое сорбента. Хроматографические методы классифицируют также по агрегатно- му состоянию анализируемого вещества. К ним относятся различные методы газовой и жидкостной хроматографии.

Адсорбционная хроматография основана на избирательной адсорбции отдельных компонентов из раствора смеси веществ. Стационарной фазой служат такие адсорбенты, как оксид алюминия, активированный уголь и др.

Ионообменная хроматография использует ионообменные процессы, происходящие между адсорбентом и ионами электролита в анализируемом растворе. Стационарной фазой служат катион обменные или ани- онобменные смолы, содержащиеся в них ионы способны обмениваться на одноименно заряженные противоионы.

Осадочная хроматография основана на различии в растворимости веществ, образующихся при взаимодействии компонентов разделяемой смеси с осадителем.

Распределительная хроматография заключается в распределении компонентов смеси между двумя несмешивающимися жидкими фазами (подвижной и неподвижной). Стационарной фазой служит пропитанный растворителем носитель, а подвижной фазой -- органический растворитель, практически не смешивающийся с первым растворителем. При выполнении процесса в колонке происходит разделение смеси на зоны, содержащие по одному компоненту. Распределительная хроматография может выполняться также в тонком слое сорбента (тонкослойная хроматография) и на хроматографической бумаге (бумажная хроматография).

Ранее других методов разделения в фармацевтическом анализе йачали применять ионообменную хроматографию для количественного определения препаратов: солей серной, лимонной и других кислот. При этом ионообменную хроматографию сочетают с кислотно-основным титрованием. Совершенствование метода позволило, используя хроматографию ионных пар с обращенной фазой, разделять некоторые гидрофильные органические соединения. Возможно сочетание комплексонометрии с использованием катионитов в Zn 2+ -фopмe для анализа аминопроизводных в смесях и алкалоидов в экстрактах и настойках. Таким образом, сочетание ионообменной хроматографии с другими методами расширяет область ее применения.

В 1975 г. предложен новый вариант хроматографии, применяемый для определения ионов и названный ионной хроматографией. Для выполнения анализа используют колонки размером 25 Х 0,4 см. Разработана двухколоночная и одноколоночная ионная хроматография. Первая основана на ионообменном разделении ионов на одной колонке с последующим снижением фонового сигнала элюента на второй колонке и кондуктометрическим детектированием, а вторая (без подавления фонового сигнала элюента) сочетается с фотометрическим, атомно-абсорбционным и другими методами детектирования определяемых ионов.

Несмотря на ограниченное число работ по использованию ионной хроматографии в фармацевтическом анализе, очевидна перспективность этого метода для одновременного определения анионного состава многокомпонентных лекарственных форм и солевых растворов для инъекций (содержащих сульфат-, хлорид-, карбонат-, фосфат-ионы), для количественного определения гетероэлементов в органических лекарственных веществах (содержащих галогены, серу, фосфор, мышьяк), для определения уровня загрязнения воды, используемой в фармацевтической промышленности, различными анионами, для определения некоторых органических ионов в лекарственных формах.

Достоинствами ионной хроматографии являются высокая селективность определения ионов, возможность одновременного определен я органических и неорганических ионов, низкий предел обнаружена (до 10 -3 и даже 10 -6 мкг/мл), малый объем проб и простота их подготовки, быстрота выполнения анализа (за 20 мин возможно разделение до 10 ионов), простота аппаратурного обеспечения, возможность сочетания с другими аналитическими методами и расширение области применения хроматографии в отношении объектов, сходных по химической структуре и трудно разделяемых методами ТСХ, ГЖХ, ЖХВД.

Наиболее широко в фармацевтическом анализе используют хроматографию на бумаге и хроматографию в тонком слое сорбента.

В бумажной хроматографии стационарной фазой служит поверхность специальной хроматографической бумаги. Распределение веществ происходит между водой, находящейся на поверхности бумаги, и подвижной фазой. Последняя представляет собой систему, включающую несколько растворителей.

В фармацевтическом анализе при выполнении испытаний методом бумажной хроматографии руководствуются указаниями ГФ XI, вып. 1 (с. 98) и частных фармакопейных статей на соответствующие лекарственные вещества (лекарственные формы). При испытаниях подлинности хроматографируют на одном листе хроматографической бумаги одновременно испытуемое вещество и соответствующий стандартный образец. Если оба вещества идентичны, то соответствующие им пятна имеют на хроматограммах одинаковый вид и равные значения R f . Если хроматографировать смесь испытуемого вещества и стандартного образца, то при их идентичности на хроматограмме должно появляться только одно пятно. Чтобы исключить влияние условий хроматографирования на получаемые значения R f , можно пользоваться более объективной величиной R S , которая представляет собой отношение величин R f испытуемого и стандартного образцов.

При испытании на чистоту о наличии примесей судят по величине и интенсивности окраски пятен на хроматограмме. Примесь и основное вещество должны иметь разные значения R f Для полуколичественного определения содержания примеси на одном листе бумаги одновременно в одинаковых условиях получают хроматограмму испытуемого вещества, взятого в определенном количестве, и несколько хроматограмм стандартного образца, взятых в точно отмеренных количествах. Затем сравнивают между собой хроматограммы испытуемого и стандартного образцов. Заключение о количестве примеси делают по величине пятен и их интенсивности.

Подобные документы

    Специфические особенности фармацевтического анализа. Испытание на подлинность лекарственных препаратов. Источники и причины недоброкачественности лекарственных веществ. Классификация и характеристика методов контроля качества лекарственных веществ.

    реферат , добавлен 19.09.2010

    Критерии фармацевтического анализа, общие принципы испытаний подлинности лекарственных веществ, критерии доброкачественности. Особенности экспресс-анализа лекарственных форм в условиях аптеки. Проведение экспериментального анализа таблеток анальгина.

    курсовая работа , добавлен 21.08.2011

    Государственное регулирование в сфере обращения лекарственных средств. Фальсификация лекарственных препаратов как важная проблем сегодняшнего фармацевтического рынка. Анализ состояния контроля качества лекарственных препаратов на современном этапе.

    курсовая работа , добавлен 07.04.2016

    Состояние маркетинговых исследований фармацевтического рынка ЛС. Методы анализа ассортимента лекарственных средств. Товароведческая характеристика винпоцетина. Анализ препаратов для улучшения мозгового кровообращения, разрешенных к применению в стране.

    курсовая работа , добавлен 03.02.2016

    Применение антибиотиков в медицине. Оценка качества, хранение и отпуск лекарственных форм. Химические строение и физико-химические свойства пенициллина, тетрациклина и стрептомицина. Основы фармацевтического анализа. Методы количественного определения.

    курсовая работа , добавлен 24.05.2014

    Классификация лекарственных форм и особенности их анализа. Количественные методы анализа однокомпонентных и многокомпонентных лекарственных форм. Физико-химические методы анализа без разделения компонентов смеси и после предварительного их разделения.

    реферат , добавлен 16.11.2010

    История развития технологии лекарственных форм и аптечного дела в России. Роль лекарств в лечении заболеваний. Правильный прием лекарственных препаратов. Способ применения и дозы. Профилактика болезней с использованием медикаментов, рекомендации врача.

    презентация , добавлен 28.11.2015

    Система анализа маркетинговой информации. Отбор источников информации. Анализ ассортимента аптечной организации. Характерные черты рынка лекарственных препаратов. Принципы сегментирования рынка. Основные механизмы действия противовирусных препаратов.

    курсовая работа , добавлен 09.06.2013

    Понятие вспомогательных веществ как фармацевтического фактора; их классификация в зависимости от происхождения и назначения. Свойства стабилизаторов, пролонгаторов и корригентов запаха. Номенклатура вспомогательных веществ в жидких лекарственных формах.

    реферат , добавлен 31.05.2014

    Комбинированное действие лекарственных веществ. Синергизм и его основные виды. Понятие антагонизма и антидотизма. Фармацевтическое и физико-химическое взаимодействие лекарственных средств. Основные принципы взаимодействия лекарственных веществ.

Лекция №2
по курсу «Анализ и контроль
качества лекарственных средств»
1

Краткий план лекции

1. Классификация ЛВ. Общая характеристика
фармакопейного анализа ЛВ. Реактивы, используемые в
фармакопейном анализе.
2. Физико-химические свойства лекарственных веществ
(агрегатное состояние, внешний вид, окраска, кристалличность,
полиморфизм и методы его исследования. Растворимость.
Кислотно-основные свойства лекарственных веществ).
3. Физические константы лекарственных средств и методы
их определения.
4. Методы идентификации лекарственных средств
5. Примеси в лекарственных средствах, классификация,
методы идентификации и анализа. Понятие о стрессовых
испытаниях
6. Методы количественного анализа лекарственных
средств
2

Классификация ЛВ

1. Неорганические вещества (производные s-, p- и dэлементов).
2. Органические вещества
2.1. Алифатические соединения (алканы,
галогеналканы, спирты, альдегиды, простые эфиры,
углеводы, аминокислоты, карбоновые кислоты)
2.2. Ароматические соединения (фенолы,
ароматические карбоновые кислоты, ароматические
аминокислоты, фенилалкиламины,
сульфаниламиды);
2.3. Стероидные соединения, простагландины
3

Классификация ЛВ (продолжение)

2.3. Гетероциклические соединения
2.3.1. Соединения, содержащие один гетероатом
(производные фурана, бензофурана, пиридина,
хинолина, изохинолина и др.);
2.3.2. Соединения содержащие два и более
одинаковых гетероатома (производные пиразола,
имидазола, бензимидазола, пурина, птеридина и
др.).
2.3.3. Соединения содержащие два и более разных
гетероатомов (производные тиазола, бензотиазола,
оксазолидины и др.).
2.4. Элементорганические вещества.
3. Радиофармацевтические препараты.
4. Биотехнологические (высокомолекулярные)
лекарственные вещества
4

Фармацевтический анализ (анализ ЛВ и ЛС)

Фармацевтический анализ – это раздел науки о
химической характеристике и измерении БАВ на всех
этапах производства – от контроля сырья до оценки
качества полученного ЛВ, изучения его стабильности
(установления сроков годности) и стандартизации ЛФ и
ЛС.
Особенности:
1. Проводится анализ совершенно различных по
природе, структуре и свойствам веществ
2. Измеряемые концентрации (содержания) находятся в
диапазоне от 10-9 (1 ppb) до 100%.
3. Анализируются не только индивидуальные ЛВ, но и их
5
смеси.

Фармацевтический анализ (классификации)

В зависимости от поставленных задач:
1. Фармакопейный анализ
2. Постадийный контроль производства ЛВ и ЛС
3. Анализ индивидуальных ЛС
4. Аптечный экспресс-анализ
5. Биофармацевтический анализ
В зависимости от результата:
1. Качественный
2. Количественный
3. Полуколичественный (предельные испытания)
6

Критерии фармацевтического анализа

1. Избирательность (специфичность, селективность) –
способность однозначно оценивать определяемый
компонент выбранным методом независимо от других
присутствующих веществ (примесей, продуктов распада и
др.) в испытуемом образце в пределах заданного
диапазона применения.
2. Чувствительность
2.1. Предел обнаружения
2.2. Предел определения
3. Правильность – отражение разницы между истинным
содержанием определяемого компонента и
экспериментальным результатом анализа.
4. Воспроизводимость (прецизионность) –
характеристика «рассеивания» результатов возле
среднего значения определяемой величины.
5. Робастность – характеристика устойчивость методики
во времени.
Эти критерии устанавливаются в процессе валидации 7
методов (методик)

Фармакопейный анализ ЛВ (общая структура)

агрегатное состояние,
внешний вид,
окраска, кристалличность,
полиморфизм
Подлинность
Первая идентификация
(специфичный метод)
Вторая идентификация
(потверждение)
Определение
физических
констант,
ф/х свойств
Фармакопейный
анализ ЛВ
(общая структура)
температура плавления, температура
затвердевания, температура каплепадения,
температурные пределы перегонки
температура кипения,
плотность и вязкость жидкостей, удельное
вращение и показатель преломления
растворимость, pH
Определение
примесей
Количественное
определение
Показатели микробной чистоты,
стерильность, апирогенность, отсутствие вирусных тел
8

Химическое название

Используется номенклатура IUPAC
(International Union Pure Applied Chemistry) – Международный союз
чистой и прикладной химии)
(гораздо реже – тривиальные названия)
1) определяют тип номенклатуры (заместительная, радикальнофункциональная);
2) определяют тип характеристической группы, которую следует принять
за главную;
3) определяют родоначальную структуру (главную цепь, старшую
циклическую систему);
4) дают название исходной структуре и основным группам;
5) дают название префиксам;
6) проводят нумерацию;
7) объединяют частичные названия в общее полное название,
придерживаясь алфавитного порядка для всех определяемых префиксов.
Помимо названия указывают структурную химическую формулу
и брутто-формулу.
9

10. Пример оформления

2-(нафтален-1-илметил)-4,5-дигидро-1Н-имидазола
гидрохлорид
10

11. Пример построения химического названия органического ЛВ

Выбор нумерации: от атома азота,
ближайшего к старшему заместителю
(С=О-группе).
Установление родоначальной
структуры: 1,4-бензодиазепин;
Название с учетом заместителей: 2,3дигидро-2Н-1,4-бензодиазепин-2-он;
Перечисление заместителей: по
алфавиту – 7-Cl-1-Me-5-Ph
Итого:
7-хлор-1-метил-5-фенил-2,3дигидро-2Н-1,4-бензодиазепин-2-он
H3C
O
N
Cl
N
11

12. Пример построения химического названия органического ЛВ (2)

2-метил-3-гидрокси4,5-ди
(гидроксиметил)пиридин
HO
OH
4
3
5
2
HO
6
N
1
12

13. Описание ЛВ

1. Агрегатное состояние (жидкость, газ, твердое
вещество, кристалличность), цвет, запах, особые
свойства (гигроскопичность, легкая окисляемость на
воздухе и др.), размер частиц (для тв. веществ).
2. Полиморфизм – явление, характерное для
твердых веществ – способность вещества в твердом
состоянии существовать в различных
кристаллических формах при одном и том же
химическом составе.
При описании сольватов (гидратов) используется
термин «псевдополиморфизм» (изменчивость
состава сольвата или гидрата).
13

14. Описание ЛВ - полиморфизм

Полиморфные формы проявляют
одинаковые химические свойства
в растворах и расплавах, но в
твердом состоянии их физические
(плотность, Т плавл, сжимаемость)
и физико-химические свойства
(растворимость и как следствие
биодоступность) могут
существенно различаться.
Та из полиморфных форм,
которая имеет меньшее значение
свободной энтальпии, является
наиболее термодинамически
стабильной, а остальные формы
могут находиться в т.н.
«метастабильном» состоянии. 14

15. Полиморфизм (примеры)

Аллотропные формы углерода: a) лонсдейлит; б) алмаз;
в) графит; г) аморфный углерод; д) C60 (фуллерен);
е) графен; ж) однослойная нанотрубка
15

16. Полиморфизм (примеры)

Нимесулид (на формуле показаны торсионные вращения и
упаковка, соответствующая полиморфной форме I)
16

17. Полиморфизм (примеры)

Нимесулид (на формуле показаны суммарные торсионные
вращения и упаковка, соответствующая полиморфной форме II)
17

18. Полиморфизм (примеры)

Данные
рентгеновской
дифракции для
форм I и II
нимесулида
18

19. Полиморфизм (примеры)

Дифференциальная сканирующая калориметрия
(DSC) полиморфных форм нимесулида
19

20. Полиморфизм и биодоступность

Кинетика растворения двух полиморфных
форм нимесулида (37С, рН 7,5)
20

21. Методы исследования полиморфных форм

1. Рентгеновская дифракция (порошок и
кристаллы)
2. Дифференциальная сканирующая
калориметрия, микрокалориметрия
3. Термогравиметрия
4. Анализ поглощения влаги
5. ИК-Фурье-спектроскопия
6. Рамановская спектроскопия
7. Изучение растворимости (кинетики
растворения)
21

22. Размер частиц (порошки, пеллеты)

Для определения размера
частиц использую наборы
сит с квадратными
отверстиями,
изготовленные из инертных
материалов. Степень
измельчения указывается с
использованием номера
сита (размер стороны
отверстия в мкм).
Современные методы – методы
лазерного сканирования
22

23. Растворимость

Данные о растворимости вещества означают
приблизительную растворимость при температуре
20°С, если нет других указаний. Выражение
«растворим в стольких-то частях» следует понимать
как указание на число миллилитров растворителя
(представленное указанным числом частей), в
которых растворим 1 г твердого вещества.
Иногда для обозначения растворимости вещества
используются описательные термины (легко, плохо,
трудно и т.д.).
Классическое описание растворимости (справочники)
– 1 г вещества растворяется в Х г растворителя при
температуре Т.
23

24. Растворимость

24

25. Кислотно-основные свойства

Не приводятся в нормативных документах по
контролю качества ЛВ, но имеют решающее
значение при проведении испытаний,
растворимости в водных средах, выборе
методик и методов анализа, а также
всасыванию, распределению,
биодоступности ЛВ.
По кислотно-основным свойствам все
вещества делятся на неионогенные (не
кислота/не основание) и ионогенные –
кислоты (проявляющие в основном
кислотные свойства), основания, амфолиты.
25

26. Методы определения физических констант

1. Гравиметрия
2. Рефрактометрия
3. Поляриметрия
4. Вискозиметрия (капиллярная,
ротационная)
5. Термометрия
26

27. Относительная плотность (d20)

Относительная плотность d представляет собой отношение
массы определенного объема вещества к массе равного его
объема воды при температуре 20оС.
Относительную плотность d определяют с помощью
пикнометра, плотномера, гигростатических весов или ареометра
с точностью до десятичных знаков, обозначенных в частной
статье. Атмосферное давление при взвешивании не учитывают,
так как связанная с ним ошибка не превышает единицы в
третьем десятичном знаке.
Кроме того, обычно используют два других определения.
Относительная плотность вещества представляет собой
отношение массы определенного объема вещества при
температуре 20оС к массе равному ему объема воды при
температуре 4оС.
Плотность ρ20 - это отношение массы вещества к его объему
при температуре 20оС. Плотность выражают в килограммах на
кубический метр (1 кг/м3 = 10 –3 г/см3). Чаще всего измерение
плотности выражается в граммах на кубический сантиметр
27
(г/см3).

28. Относительная плотность

28

29.

29

30. Показатель преломления

30

31. Рефрактометры

31

32.

32

33. Оптическое вращение

33

34. Оптическое вращение

34

35.

35

36. Поляриметрия (оборудование)

36

37. Вязкость

Вязкость (внутреннее трение) – свойство текучих тел оказывать
сопротивление передвижению одной их части относительно
другой.
Текучие тела могут иметь ньютоновский тип течения.
Ньютоновскими жидкостями называют системы, вязкость которых
не зависит от напряжения сдвига и является постоянной
величиной в соответствии с законом Ньютона.
Для ньютоновских жидкостей различают динамическую,
кинематическую, относительную, удельную, приведенную и
характеристическую вязкости. Для неньютоновских жидкостей
характерна, главным образом, структурная вязкость.
Динамическая вязкость или коэффициент вязкости η – это
тангенциальная сила, приходящаяся на единицу поверхности,
которая также называется напряжением сдвига t , выраженная в
паскалях (Па), которую необходимо приложить для того, чтобы
переместить слой жидкости площадью 1 м2 со скоростью (v) 1
метр в секунду (м.с-1), находящийся на расстоянии (х) 1 метр
относительно другого слоя, параллельно площади скольжения.
37

38. Вязкость (капиллярный метод)

Методика. Испытуемую жидкость,
имеющую температуру 20оС, если в
частной статье не обозначена другая
температура, заливают в вискозиметр
через трубку (L) в таком количестве, чтобы
заполнить расширение (А), но при этом
уровень жидкости в расширении (В) должен
остаться ниже выхода к вентиляционной
трубке (М). Вискозиметр в вертикальном
положении погружают в водяную баню при
температуре (20+/-0,1)оС, если в частной
статье не указана другая температура,
удерживая его в этом положении не менее
30 минут для установления температурного
равновесия. Трубку (М) закрывают и
повышают уровень жидкости в трубке (N)
таким образом, чтобы она находилась
примерно на 8 мм выше метки (Е).
Удерживают жидкость на этом уровне,
закрыв трубку (N) и открыв трубку (М).
Затем открывают трубку (N) и измеряют
время, за которое уровень жидкости
снизится от метки (Е) до метки (F),
секундомером с точностью до одной пятой
секунды.
38

39. Температурные пределы перегонки

39

40. Температура плавления

1. Капиллярный метод определения температуры
плавления. Температура плавления, определенная
капиллярным методом, представляет собой температуру, при
которой последняя твердая частичка уплотненного столбика
вещества в капиллярной трубке переходит в жидкую фазу.
2. Открытый капиллярный метод - применяют для
веществ, имеющих аморфную структуру, не растирающихся в
порошок и плавящихся ниже температуры кипения воды,
таких как жиры, воск, парафин, вазелин, смолы.
3. Метод мгновенного плавления - применяют для твердых
веществ, легко превращаемых в порошок.
4. Температура каплепадения - температура, при которой в
условиях, приведенных ниже, первая капля расплавленного
испытуемого вещества падает из чашечки (жиры, воски,
масла).
5. Температура затвердевания – максимальная температура,
при которой происходит затвердевание переохлажденной жидкости.
40

41. Определение температуры плавления (инструментальное)

Видео процесса плавления
Цветное видео высокого разрешения позволяет изучать
вещества, которые плавятся с разложением или имеют
окраску. С помощью приборов можно также изучать явления
41
термохромизма.

42. Подлинность (методы)

1. Химические реакции подлинности:
А. Общие реакции на подлинность по
функциональным группам (первичные
ароматические амины, алкалоиды,
сложные эфиры и др.)
Б. Специфичные реакции на ионы
В. Специфичные реакции на
органические вещества
42

43. Примеры реакций идентификации по функциональным группам

Реакция на первичную ароматическую аминогруппу:
43

44. Примеры реакций идентификации по функциональным группам

Реакция на первичную аминогруппу
(нингидриновая реакция):
44

45. Специфические реакции на ионы

45

46. Специфические реакции на ионы

46

47. Специфические реакции на ионы

Специфические реакции на ионы
подразделяются:
1. Реакции осаждения
2. ОВ реакции
3. Реакции разложения
4. Реакции комплексообразования
47

48. Специфические реакции подлинности

48

49.

49

50.

50

51.

51

52.

52

53.

53

54.

54

55.

55

56.

56

57. Подлинность (методы)

2. Инструментальные методы
2.1. ИК-спектроскопия (ИК-Фурье)
2.2. Абсорционная спектрофотометрия
в УФ и/или видимой области спектра
2.3. Хроматографические методы (ТСХ,
ГХ, ЖХ)
2.4. Электрофорез, капиллярный
электрофорез (включая пептидное
картирование)
57

58. Подлинность (методы)

3. Физические методы (определение
физических констант):
3.1. Температура плавления, кипения,
температурные пределы перегонки.
3.2. Относительная плотность.
3.3. Показатель преломления.
3.4. Угол оптического вращения.
3.5. Определение вязкости.
58

59. Подлинность (доказательство)

Установление подлинности ЛВ проводится
как минимум 2 методами!
Первая идентификация – специфичный
инструментальный метод (как правило ИКспектрометрия) + дополнительныйметод
(например, хроматографический или
химический метод)
Вторая идентификация – подтверждение
подлинности (используются определение
физических констант, дополнительных
химических методов, абсорбционная
спектрофотометрия и др.).
59

60. Примеси (классификация)

1. Общие технологические примеси – попадающие в процессе
производства.
1.1. Реагентные примеси (SO42-,Cl-, сульфатная зола и др.)
1.2. Примеси от контакта с технологическим оборудованием (HM,
As, Pb, Cd, Fe и др.)
1.3. Остаточные органические растворители
1.4. Вода, влага
2. Специфические примеси – характерны для конкретного ЛВ и
включают:
2.1. Полупродукты синтеза и специфические реагенты
2.2. Побочные продукты синтеза
2.3. Сопутствующие примеси (химически родственные аналоги и
остаточные кол-ва пестицидов и супертоксикантов – для ЛВ
природного происхождения)
2.4. Стереоизомеры-примеси (примеси энантиомеров)
2.5. Продукты разложения и взаимодействия с технологическими
примесями, влагой, кислородом воздуха, органическими
растворителями и др.
3. Механические примеси
60

61. Примеси

1. Летучие (характеризуются потерей в массе при
высушивании).
2. Неорганические (устанавливаются при определении
сульфатной золы, тяжелых металлов и т.д.).
3. Родственные по структуре примеси (определяются
хроматографическими методами или электрофорезом).
Отдельно классифицируют токсичные
(оказывают влияние на фармакологический
эффект – т.е. являются недопустимыми) и
нетоксичные (указывают на степень очистки
ЛВ) примеси.
61

62. Потеря в массе при высушивании (метод гравиметрии)

Является суммарным неспецифичным показателем,
характеризующим наличие воды (влаги), остаточных 62
органических растворителей в ЛВ

63. Определение воды

1. Дистилляция (отгонка) – для жидкостей
2. Титриметрический метод (метод К.
Фишера, микрометод) – для твердых веществ
63

64. Физические и химические свойства, характеризующие чистоту

Прозрачность и степень мутности. Прозрачные растворы –
при освещении их электролампой на черном фоне не
наблюдается присутствие нерастворенных частиц. Степень
мутности устанавливают путем сравнения испытуемого
вещества с эталоном (или с растворителем).
Окраску жидкостей устанавливают путем сравнения
испытуемых растворов с равным объем одного из эталонов при
дневном освещении на матово-белом фоне.
Адсорбционная способность – устанавливается по
обесцвечиванию красителя (метиленовый синий) в растворе ЛВ
определенной концентрации.
Примеси окрашенных веществ (светопоглощающие примеси)
– для неокрашенных веществ определяется абсорбция
раствора ЛВ в воде или органическом растворителе в видимой
области спектра.
64

65. Определение золы

Метод гравиметрии
1. Общая зола (ЛРС, ряд органических
ЛВ) – сжигание навески (1.0000 г)
испытуемого образца в тигле при Т
около 500оС (30 мин), после
охлаждения определяют массу остатка.
2. Сульфатная зола - навеску
смачивают 1 мл Н2SO4 и далее
поступают как при определении общей
золы.
65

66. Определение «тяжелых» металлов

А. Стадия пробоподготовки:
1. Растворение в воде (для ЛВ, хорошо растворимых в воде) или
в смеси с органическими растворителями (ацетон, диоксан);
2. «Мокрая» минерализация (для органических веществ) –
2.1. сжигание ЛВ со смесью MgSO4 и H2SO4 (Т=800оС).
2.2. минерализация смесью H2SO4 и HNO3 (нагревание до
200оC).
2.3. минерализация с использованием СВЧ-нагревания
(тефлоновые сосуды, 2,5 ГГц).
3. «Сухая» минерализация – сплавление с MgO (Т=600оС).
Б. Качественный и/или полуколичественный анализ
(химическая реакция с сульфид-ионом):
1. Качественный – безэталонный (отсутствие окраски с
реагентом)
2. Полуколичественный анализ – сравнение окраски с эталоном,
содержащим предельное количество ионов свинца (эталона).
66
В. Количественный анализ – метод ААС или АЭС.

67. Остаточные органические растворители (классификация)

В основе классификации лежит потенциальная
опасность растворителей для организма человека и
окружающей среды.
Класс 1. Растворители, использования которых
следует избегать (канцерогенные вещества и
супертоксиканты окружающей среды – бензол, ТХУ,
1,2-дихлорэтан, 1,1-дихлорэтен, 1,1,1-трихлорэтан).
Класс 2. Растворители, использование которых
следует ограничивать (негенотоксичные
канцерогены, вещества с существенной
токсичностью) – ацетонитрил, гексан, диоксан,
ксилол, метанол, нитрометан, пиридин, хлороформ,
толуол, этилеггликоль и др.
67

68. Остаточные органические растворители (классификация, продолжение)

Класс 3. Малотоксичные растворители (с
низким потенциалом токсичности у человека,
не требуют установления предельных
содержаний – менее 5000 ppm (мкг/г) или
0,5%) – ацетон, бутанол-1, бутанол-2, гептан,
ДМСО, пентан, уксусная кислота, пропанол-1,
пропанол-2, этанол, ТГФ, пентан и др.
Класс 4. Растворители, для которых
отсутствуют необходимые данные о
токсичности (изооктан, петролейный эфир,
трифторуксусная кислота и др.).
68

69. Остаточные органические растворители

Метод газовой хроматографии (ГХскрининг)
А. Подготовка образца и раствора
сравнения
1. Растворение навески испытуемого образца
в воде (для ЛВ, растворимых в воде).
2. Растворение навески испытуемого образца
в диметилформамиде (ДМФА).
3. Растворение навески испытуемого образца
в 1,3-диметил-2-имидазолидиноне.
Поскольку большинство органических растворителей
«включены» в кристаллическую решетку (или в
структуру в виде сольватов) ЛВ, пробоподготовка
должна включать полное растворение образца с
«разрушением» решетки и возможных сольватов.
CH3
H
N
CH3
O
CH3
N
O
N
CH3
69

70. Остаточные органические растворители (анализ)

Б. Парофазовая пробоподготовка –
проводится для перевода ООР из раствора в
парогазовую фазу (нагревание в герметично
укупоренном сосуде).
В. Газохроматографический анализ парогазовой фазы (полуколичественный анализ с
разделением на капиллярной колонке средней
полярности).
70

71. Специфические примеси

1. Полупродукты синтеза и специфические реагенты
(включая катализаторы)
1.1. Неорганические вещества – катионы, анионы,
комплексные соединения
1.2. Органические вещества
1.3. Генетически-модифицированные микроорганизмы,
вирусы и др.
O
N
N
HN
N
N
N
CH3
Ирбесартан (примесь азид-иона)
71

72. Специфические примеси

Наибольшая группа примесей в органических ЛВ –
родственные по химической структуре химические
вещества (число их ограничено пока только
возможностями методов разделения и детекции). Чем
сложнее хим. структура – тем большее количество
примесей необходимо нормировать.
O
H3C
H3C
CH3
O
H
H
CH3
H
O
H
H3C
O
O
CH3
O
H
H
S
O
H
O
S
H
H
Br
O
H
CH3
O
CH3
H
O
S
H
O
O
H3C
CH3
CH3
Спиронолактон
H3C
O
H
H
O
CH3
H3C
O
CH3
H
H
H
O
O
H
H
H
H
O
72
O

73. Специфические примеси

OH
OH
O
Парацетамол
O2N
H3C
N
H
OH
HO
H2N
O
Побочные
продукты
синтеза
Cl
H3C
O
N
H
OH
O
H3C
H3C
N
H
Промежуточные
продукты
синтеза
N
H
Cl
OH
O
H3C
N
H
73

74. Специфические примеси

Сопутствующие примеси в ЛВ природного
происхождения:
А. химически родственные аналоги
(обладают биологической (фармакологической)
активностью, могут быть потенциально опасны
для организма)
Б. остаточные кол-ва пестицидов и
супертоксикантов (полихлордиоксины,
полихлорбифенилы), продукты
жизнедеятельности микроорганизмов
(афлатоксины) – безусловные токсические
вещества, жестко нормируемые на уровне ppm и
ppb (мкг/г или нг/г)
74

75. Сопутствующие примеси в ЛВ природного происхождения (пример)

OH
O
OH
OH
O
H
H
H
HO
H
OH
H
OH
cholic acid
H
HO
O
H
OH
ursodeoxycholic acid
H
Урсодезоксихолевая кислота
(выделяется из медвежьей желчи)
H
H
OH
OH
chenodeoxycholic acid
75

76. Специфические примеси

Продукты разложения и взаимодействия:
1. с технологическими примесями (тяжелыми металлами
(d-элементы являются катализаторами многих ОВреакций, в том числе с участием O2), ионами железа,
остатками реагентов с реакционоспособными
функциональными группами),
2. с влагой (возможны реакции гидролиза (сложные
эфиры, амиды, карбаматы и др.), поглощение влаги
всегда связано с уменьшением содержания активного
вещества),
3. с кислородом воздуха (кислородочувстивительные
вещества, например, полиненасыщенные жирные
кислоты, сильные восстановители),
4. с остаточными органическими растворителями (ряд
органических растворителей – этиленоксид, дихлорметан,
дихлорэтан, уксусная кислота и др. – достаточно
реакционоспособны и реагируют с ЛВ при хранении).
76

77. Стрессовые испытания -

Стрессовые испытания Испытания устойчивости ЛВ под
воздействием ряда факторов
(температура, реагенты, освещение) с
целью доказательства селективности
методов оценки примесей, изучения
образования и идентификации
примесей, дополнительного изучения
стабильности ЛВ при хранении.
77

78. Стрессовые испытания (условия)

1. Температура – последовательное
повышение температуры при хранении
образца ЛВ на 10оС (50, 60 и т.д.);
2. Влажность (повышение отн. влажности
воздуха при хранении образца ЛВ до 75% и
выше).
3. Реагенты – растворы кислот (1М HCl),
щелочей (1М или 0,1М NaOH), H2O2 (3-30%)
при нагревании.
4. Воздействие света (УФ-свет,
интенсивность - не менее 200 Вт.ч/м2)
78

79. Количественное определение

Методы анализа (классификация,
краткая характеристика, применение
для анализа ЛВ и ЛС, сравнительная
оценка) – это тема следующих как
минимум 3 лекций!
Благодарю за внимание!